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Nomenclature

English Letter Symbols

A = empirical model constant for Schmidt's PTM transition model

B = empirical model constant for Schmidt's PTM transition model

c = specific heat at constant pressure

Cj = Wwork - energy conversion constant

Crt = local friction coefficient, 1,/ (p.U.2)

C; = Wwork - energy conversion constant

C. = empirical constant for turbulent viscosity calculation

C = empirical constant for TDR transport equation

C, = empirical constant for TDR transport equation

D = low-Reynolds number term for TKE equation

E = low-Reynolds number term for TDR equation

f, = damping function used in turbulent viscosity calculation

f, = damping function for TDR transport equation

fa = damping function for TDR transport equation

gc = force - mass conversion constant

{: = instantaneous stagnation enthalpy

1" = mean stagnation enthalpy

i = fluctuating stagnation enthalpy

k = turbulent kinetic energy (TKE), 0.5 ( U 24y 24w 2 ), or laminar
(molecular) thermal conductivity

k* = nondimensional turbulent kinetic energy, k/u?

k, = turbulent thermal conductivity

P = thermodynamic pressure

Pr = Prandtl number

Pr, = turbulent Prandtl number

Presr = effective Prandtl number, see Eq. (2.33)

iv



q = molecular heat flux
q = molecular heat flux per unit area

Re,, = momentum Reynolds number, UeSofv

Re, = turbulent Reynolds number, k2 /( VE )

Re, = x-Reynolds number, Uex/V

Re, = local Reynolds number, ( ucy Y'v=y

s = turbine blade wetted surface distance

St = Stanton number, h/(U¢pc)

Sk = Summation of the TKE equation source terms, see Eq. (4.8)
Se - Summation of the TDR equation source terms, see Eq. 4.9)
Syt = Nondimensional Sy, Syviudt

S;* = Nondimensional S, SevZub

T = temperature

Tu = turbulence intensity, 1/U, (1/3 (u_u +VV + W))OS

U - instantaneous streamwise velocity component (x-direction)
U = mean streamwise velocity component (x-direction)

u = fluctuating streamwise velocity component (x-direction)

Ur = shear velocity, [(gctw) / pw]®-

v — instantaneous cross-stream velocity component (y-direction)
\Y% = mean cross-stream velocity component (y-direction)

v = fluctuating cross-stream velocity component (y-direction)

X = streamwise coordinate

y = cross-stream coordinate

y* = nondimensional y-distance from a wall for turbulent shear layers

Greek Letter Symbols

o = molecular thermal diffusivity, or empirical model constant for The
University of Texas transition model

B = empirical model constant for The University of Texas transition
model

v



A = thickness of thermal boundary layer

8 = thickness of momentum boundary layer

82 = momentum thickness of the boundary layer

Oki = kronecker delta

€ = nonisotropic turbulent dissipation rate, -ugi,s_ij

€ = isotropic turbulent dissipation rate (TDR), -HOud u'
€4 = eddy diffusivity for heat transfer

€M = eddy diffusivity for momentum

€ = nondimensional turbulent dissipation rate, eviu?
H = dynamic viscosity

Wi = turbulent viscosity

Hert = effective viscosity, y + Th

V= kinematic viscosity

Vi = turbulent viscosity, p, / p

p = fluid density

C¢ = empirical constant for the TDR transport equation
Ox = empirical constant for the TKE transport equation
Oki = stress tensor

Subscripts

C = critical value

€ = freestream location

E = end of transition

f = far-field location

S = start of ransition

w = wall location

vi



Chapter 1

Literature Review

1.0 Introduction

Gas turbine engine design has changed drastically in recent years in the
quest to improve engine efficiency and increase power output levels. The devel-
opment of a more efficient gas turbine is directly linked to an increase in the turbine
inlet temperature. As the gas turbine inlet temperature rises, so does the turbine ef-
ficiency and power output. However, there is a penalty for increasing the inlet
temperature, namely the ability to protect the turbine blades from the high tempera-

ture environment. This issue becomes an important design consideration.

Accurate prediction of the gas side heat transfer between the hot mainstream
gases and the turbine blade surface has proved to be difficult and unreliable. Pre-
diction of the developing boundary layer from the blade stagnation point, to a de-
veloping laminar boundary layer, through transition, and finally to a fully turbulent
boundary layer is integral to predicting the blade heat transfer. High heating rates
on a gas turbine blade occur in the stagnation region and at the end of the transition
region. Since engineers design the shape of turbine blades and the resulting stag-
nation point location, the thermal protection required in this region can be assessed.
On the other hand, the complex nature of the transition process and the failure of
mathematical models to simulate this process often leads to an over-design of the
thermal protection needed by the turbine blade.

The original objective of this thesis was to assess two transition models
using a two-dimensional boundary layer code, TEXSTAN. In particular, the re-
search was to focus on transition models developed at the University of Minnesota

and The University of Texas at Austin as applied to the K. Y. Chien [1982] two-
1



equation turbulence model to assess their transition simulation capabilities. This re-
search also focuses on the initial and boundary condition characteristics required to
accurately simulate transition. The results of this research have led to identification
of a major shortcoming in the use of the basic K. Y. Chien turbulence model for
low-Reynolds number flows.

1.1 Gas Turbine Environment and Numerical Simulation
Difficulties

This section is an overview of the environmental conditions modeled by
numerical simulations that calculate the heat transfer distribution on turbine blades.
The quest for improved turbine efficiency has pushed the turbine inlet temperatures
past the melting point of turbine blade materials, resulting in a need to design ade-
quate blade cooling systems based on accurate turbine blade heat transfer distribu-
tions. The building of experimental turbine blades to measure heat transfer distri-
butions has become so costly and time consuming that a need for accurate numeri-
cal modeling of turbine blade heat transfer has become amust. With improvements
in numerical schemes and computational ability, the need for experimental mea-
surements will decrease; however, current agreement between experimental and
numerical heat transfer predictions on turbine blades has not been consistent, espe-
cially in the transition region of the blades.

Figure 1.1 shows a schematic of the basic components for a propulsion gas
turbine engine. Air enters the gas turbine and is compressed by an axial flow com-
pressor, which increases the air pressure. At the end of this process, the air enters
a combustion chamber where fuel is injected and burned at essentially constant
pressure. The products of combustion are then diluted to control the gas tempera-
ture and then expanded through a turbine. Here change in the axial momentum of
the combustion gases is converted to a torque on the turbine rotor, hence the fluid
work is extracted through the rotor to drive the compressor. Turbine inlet gas tem-



peratures from the combustion chamber are typically on the order of 2500°F
(1370°C) and at a pressure of 15 - 25 atmospheres. The combustion gases are in a
highly turbulent state with the turbulence levels being in the range of 10% to 20%

\E Combustion Chamber

or more.

Compressor Turbine
Air Exhaust
Intake

Figure 1.1. Schematic of a gas turbine engine.

The turbine section consists of one or more stages, each containing a row of
stationary turbine blades, called stators or nozzle guide vanes, and a row of rotating
blades, called buckets or rotor blades. Figure 1.2 shows a typical turbine blade.
The upper and lower contour of a turbine blade are different; therefore, the flow
characteristics around each side of a turbine blade are different. The upper surface
of a turbine blade is typically called the "suction” or "convex” surface, because of
the higher flow acceleration and resulting lower pressure distribution. The lower
surface of a turbine blade is typically called the "pressure” or "concave" surface,
because of the lower flow acceleration and resulting higher pressure distribution.
The incoming flow from the combustion chamber is guided by the first-stage stator
to the rotor blades where the flow around the rotor blades produces a torque about
the rotor shaft. On each blade there exists a stagnation point where a line drawn
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Figure 1.2. Turbine blade nomenclature.



normal to the surface is exactly parallel to the approaching flow. Itis from the
stagnation point where the thin viscous region, known as the boundary layer, de-
velops and grows over the pressure and suction surfaces. Outside the boundary
layer the flow field is considered irrotational and thus inviscid.

The flow field over a turbine blade is complex and three-dimensional in na-
ture. However, the three-dimensional effects may be considered secondary in the
midspan region if the blade aspect ratio is not too small. A blade aspect ratio is the
ratio of the blade length to the midspan chord and is a measure of the influence
endwall and/or tip effects may have on the midspan region. Endwall heat transfer
on turbine blades is strongly three-dimensional and not amenable to a two-dimen-
sional numerical simulation. However, with a large aspect ratio, the flow field may

be considered two-dimensional over the midspan of the blade.

Boundary layer development on a typical turbine blade is influenced by
many mechanisms, and their effects on turbine heat transfer distribution are often
not fully understood. Some of the mechanisms which influence boundary layer

development include:

(1) laminar, transitional, and turbulent flows

(2) high freestream turbulence

(3) effects of adverse and favorable pressure gradients
(4) stagnation flow with freestream turbulence

(5) curvature effects

(6) body force effects due to blade rotation

(7) variable property effects

(8) surface roughness

(9) endwall effects

(10) flow unsteadiness and periodicity



Extensive research is currently being conducted to determine the role each of the
above influences plays in the development of the turbine blade boundary layer.
Typical two-dimensional boundary layer computer codes can incorporate models to
account for a number of the boundary layer influences listed above. However,
despite additional models, acceptable accuracy in boundary layer predictions has
not been attained. Discussions by Graham [1979] and Hylton et al. [1983] offer
further review of the above influences affecting turbine blade boundary layer
development. Tani [1969] provides a discussion on the factors that influence

transition.

1.2 Overview of Turbulence Modeling

The purpose of this section is to acquaint the reader to the different methods
of numerically modeling turbulent flow. The modeling of transition requires a nu-
merical code to have the capability of modeling both laminar and fully turbulent
boundary layer development. The numerical prediction of laminar boundary layer
characteristics without disturbances is well documented and is relatively easy to
verify. On the other hand, numerical schemes to predict fully turbulent boundary
layer characteristics are numerous and the prediction capability of each method is
subject to debate. This brief overview of the various turbulence models will help
explain the theory behind two-equation turbulence models, which are used in this

thesis.

There are a variety of turbulence models with an increase in computational
effort and complexity associated with the more general models. Rodi [1982] pro-
vides an excellent overview on the different aspects of the various turbulence mod-
els. Other reviews of turbulence modeling include Hirata et al. [1982] and
Lakshminarayana [1986]. Turbulence models are so abundant that many of them
have not been adequately tested against experimental data to determine under which



flow conditions the models may not be accurate. Turbulence models are generally

classified as follows according to increasing complexity,

(N Zero-equation model (e.g. mixing length model or al gebraic model)
) One-equation model (e.g. the k model)

3) Two-equation model (e.g. the k-€ model)

4) Full Reynolds stress (FRS) model

(5) Algebraic Reynolds stress (ARS) model

(6) Large eddy simulation (LES) model

€)) Direct simulation

Despite the advances of directly solving the time-dependent full Navier-Stokes
equations or solving the equations using a LES model, the only economically feasi-
ble way to solve high Reynolds number turbulent flow problems with complex
geometry is the use of statistically averaged equations governing the mean-flow
quantities [Rodi, 1982].

The governing equations describing the turbulent boundary layer are pre-
sented in Chapter 2, but for discussion purposes the basic numerical approach for
most turbulent boundary layer computer codes is to solve the time-averaged gov-
erning equations. When the two-dimensional instantaneous x-momentum bound-

ary layer equation is time-averaged, two new convective terms arise, puu’ and

pu'v'. These are called turbulent Reynolds stresses. The first term, a normal
Reynolds stress, is either considered negligible or lumped with the pressure gradi-
ent. The second term, appearing as a y-gradient, is moved from the convective side
of the equation to the diffusive side where it adds to the viscous shear stress. The
presence of the turbulent Reynolds stress is an additional unknown leading to the
turbulence closure problem. A turbulence model is needed to describe the
Reynolds stress before the boundary layer equations may be solved.



The Boussinesq [1877] assumption is traditionally used to relate the turbu-
lent stresses to the mean velocity gradient through the use of a turbulent viscosity,
called mean field closure (MFC),

v = v Y
Jy - (1.1)

where the proportionality constant, v, is called the turbulent viscosity. The turbu-
lent viscosity is not a fluid property, but depends on the turbulence in the flow and
hence is a function of position and upstream history of the flow development. Itis
apparent from equation (1.1) that the closure problem reduces to describing the tur-

bulence viscosity.

The oldest and simplest MFC model was developed by Prandtl [1925] and
termed a zero-equation turbulence model. Prandtl proposed that the turbulent vis-
cosity distribution may be calculated by relating v, to the local mean velocity

gradient

Vt=]%1

a_ll! , (1.2)

dy

where 1, is the mixing length. Prandtl reasoned that in the near-wall region the
only significant length dimension is the distance from the wall, and thus it is rea-
sonable to assume l, is proportional to y. However, very near a wall, 1, changes
in a non-linear manner, and far away from the wall, 1, becomes independent of y.

One popular model for describing 1, is the Van Driest model described in

Kays and Crawford [1980]. The Van Driest mode! describes the single unknown
parameter, ly, over the flow field by the following empirical formulas,

In = K‘y‘l -exp(- i‘—i” for O.()<y+s7‘7<§ (1.3)



and

= A8 for y+>23;c§-, (1.4)

Im

where x is the Von Karman constant equal to 0.41, A* is the Van Driest damping
function equal to 25.0 for zero pressure gradients, A is the outer layer constant
equal to 0.085, and § is the boundary layer thickness. There exists a large amount
of experimental data gathered which may be used to empirically obtain In,.

For all its simplicity, the zero-equation turbulence model has some disad-
vantages. First, the zero-equation model assumes the flow is in local equilibrium,
that is, at each point in the flow the turbulent energy is dissipated at the same rate it
is produced. As a result, there cannot be any influence of turbulence production on
other parts of the flow or at earlier times. This means the zero-equation model can-
not account for the transport and history effects of turbulence. The second problem
of zero-equation models is that buoyancy, rotation, or streamline curvature effects
must be defined by a mixing length distribution, other than specified by equations
(1.3) and (1.4), which are often difficult to develop. This applies equally to
complex turbulent flows. Even with these limitations. the zero-equation turbulence

model is used quite often to approximate a turbulent flow field.

To obtain more general turbulence models that account for history and
transport effects, higher-order turbulence models were developed, such as one- and
two-equation models. These higher order turbulence models solve additional trans-
port equations for turbulence quantities. The additional transport equations all
adhere to the same basic form linking convection of the quantity under considera-
tion to laminar and turbulent diffusion and to the positive and negative source of the

quantities.

Convection = Diffusion + Sources. (1.5)
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These additional turbulence quantities are used to improve the prediction of the tur-

bulent viscosity.

The one-equation turbulence model attempts to incorporate the history and
transport effects of turbulence. From a dimensional point of view, the turbulent
viscosity may be thought of as a combination of a turbulent velocity scale,V,, char-
acteristic of the fluctuating velocities, and a turbulent length scale, L,, characteristic

of large turbulent eddies

v < ViL (1.6)

The one-equation model uses a transport equation to model the velocity scale of the
turbulent motion. The velocity scale is defined as Yk , Where k is the kinetic energy
of the turbulent motion and is a measure of the intensity of the three-dimensional
turbulent fluctuations. The governing equation for k describes the transport of k in
a turbulent flow. Utilizing tensor notation with repeated indicies indicating sum-
mation, the governing equation for k is written in the form of equation (1.5) as

follows
Dx ax,- Ok axi e ax,- ’ (1.7)
I 11 111 v

where I is the convection of k; Il is the diffusion of k; III is the production of k, P,
which represents a positive source term; and IV is the dissipation of k, which rep-
resents a negative source term. The rate coefficient (v,/ 6y) represents the turbulent

diffusion coefficient for the diffusion of k.

In this one-equation model, the turbulent dissipation rate is a measure of the
destruction of k and must be specified. The turbulent dissipation rate is defined by
dimensional considerations that link it to a turbulence length scale, L
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e = Cpk2, (1.8)

where Cp is an empirical constant of proportionality for high-Reynolds number
turbulence. The turbulent viscosity for a one-equation model is then defined fol-

lowing equation (1.6) as

vi = GuVkL, (1.9)

where Clp is the empirical constant of proportionality for high-Reynolds number
turbulence. Specification of the turbulent length scale is similar to the mixing
length scale defined in equations (1.3) and (1.4). An empirical specification of L
works well for simple shear layers as demonstrated by work in Bradshaw et al.
[1967] and by Hassid and Poreh [1975].

As with the zero-equation turbulence model, the one-equation turbulence
model also has some disadvantages. For complex turbulent shear flows the speci-
fication of an empirical function for L is no easier to specify than it is for the mixing
length, . The governing transport equation for k (equation 1.7) and the empirical
constants, Cp and C,., were developed for high-Reynolds number flows where the
ratio of v, to v is large. Therefore, in the near-wall region where the local turbulent
Reynolds number is low, the constants of the model become functionals. Low-
Reynolds number one-equation models have been developed and work well for
zero and adverse pressure gradient flows, but generally have problems with
strongly accelerated boundary layers. Besides the turbulent velocity scale, the tur-
bulent length scale is also subject to history and transport effects which are not ac-
counted for by the one-equation turbulence model. Due to the aforementioned
problems, the recent trend has been to use two-equation turbulence models that cal-
culate a length scale from another turbulent ransport equation.
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The two-equation turbulence model utilizes transport equations for the ve-
locity and length or time scales of turbulent motion to account for history and trans-
port effects of turbulence. A popular two-equation model is the k-¢ turbulence
model, in which the length scale is constructed from a combination of k and €. The
turbulent length scale for k-€ models is defined by dimensional considerations as

L= ki3 (1.10)
€

This length scale is used in conjunction with equation (1.6) to calculate the turbu-
lent viscosity at any point in the boundary layer. Thus the second differential
transport equation is that for €.

Other classes of two-equation models exist in which the second variable is
fluctuating vorticity (often termed k-w? turbulence models) or some other turbu-

lence variable. The ability to relate the turbulent dissipation rate to VOrticity is not
discussed in this section, but examples of k-2 models include Saffman [1970],

Saffman and Wilcox [1974], Wilcox and Traci [1976], and Wilcox and Rubesin
[1980].

A two-equation k-€ model uses equation (1.7) to calculate the velocity scale
of the boundary layer. The dissipation, €, is calculated using a differential transport

equation defined as

De _ 9 [v 9 E£p. ., E2
I 11 I v

where I is the convection of €; 11 is the diffusion of g; Il is the production of €,
which represents a positive source term; and IV is the dissipation of €, which repre-
sents a negative source term. The rate coefficient (v, / O¢) represents the turbulent
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diffusion coefficient for the diffusion of €, while C; and C; are turbulent model

constants.

The terms in equation (1.11) are similar to the terms of equation (1.7).
Equations (1.7) and (1.11) constitute the high-Reynolds number (HRN) form of
the two-equation models and thus require the use of wall functions to calculate
through the buffer and viscous sublayers in the near-wall region. Jones and
Launder [1972, 1973] proposed a low-Reynolds number (LRN) form of k-¢ tur-
bulence model that allowed continuous numerical calculations from the freestream
down to the wall. The Jones and Launder LRN two-equation turbulence model has
additional terms on the right-hand side of equations (1.7) and (1.11) to allow the €
wall boundary condition to be set to zero and to improve the match between the
numerical peak level of turbulent kinetic energy and experiment. Since Jones and
Launder's original proposal, a large variety of LRN two-equation turbulence mod-
els have been presented in the open literature. Examples of the different LRN two-
equation models include Launder and Sharma [1974], Reynolds [1976], Lam and
Bremhorst [1981], K. Y. Chien [1982], and Nagano and Hishida [1987]. In an
attempt to evaluate the performance of several two-equation models, Patel et al.
[1985] systematically examined eight two-equation models for their prediction ca-
pability over a variety of flows. They concluded that the two-equation models of
Launder and Sharma [1974], K. Y. Chien [1982], Lam and Bremhorst [1981), and
Wilcox and Rubesin [1980] performed better than the other models for the turbulent

flows considered.

One limitation to the k-¢ turbulence model is the assumption that the turbu-
lent viscosity is isotropic, implying the Reynolds stresses are uniform in all direc-
tions. Relating the Reynolds stresses to one velocity scale and length scale for all
directions is a weakness of the two-equation model. In complex turbulent shear
flows, the individual Reynolds stresses develop quite differently depending on the
location in the flow. The turbulence models discussed so far can not account for
the nonisotropic nature of Reynolds stresses. To account for the different devel-
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opment of each Reynolds stress, a transport equation for each component of the
Reynolds stress tensor may be formulated. This is the foundation for a Reynolds

stress turbulence model.

In general, there are six components of Reynolds stress, defined in tensor

notation as pu;u;. Turbulence models that solve transport equations for each
component of the Reynolds stress tensor without approximations are called full
Reynolds stress (FRS) models or second-moment closure schemes. The transport
equation for each Reynolds stress component in tensor notation [Markatos, 1987]

may be written as

DU

where Pjj is the Reynolds stress production tensor; ITj; is the pressure strain
"redistribution tensor;" Dj; is the diffusion tensor; and €;; is the viscous dissipation
tensor. Launder [1984] provides a very detailed derivation for equation (1.12) and
the use of FRS models in general. In using a FRS model, a constitutive equation
for calculating the turbulent Reynolds stresses is not required because the Reynolds
stresses are directly solved by the set of equations similar to equation (1.12). One
difficulty in using a FRS model is the lack of information concerning the functional
forms of the various terms of equation (1.12). This lack of information is prevalent
in the near-wall region, the boundary conditions, and the initial profiles for each
Reynolds stress component. FRS models are rather complex and computationally
expensive, therefore they are not well suited for practical applications.

The solution to each Reynolds stress transport equation is not easy and re-
quires considerable computer time and expense. However, it would be desirable to
simplify the Reynolds stress equations as much as possible for computation capa-
bility, but still retain accurate predictions. For this reason, the algebraic Reynolds
stress (ARS) model was developed to reduce the differential transport equations for
Reynolds stress into algebraic expressions that still retain the characteristics of the
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differential terms. The convection and diffusion terms make the transport equations
differential equations, hence when these terms are eliminated by model approxima-
tions, the differential equations can be converted into algebraic expressions. Rodi

[1976] proposed the transport of u'iu; as proportional to the transport of k with the

proportionality factor being the ratio u'iu;/k, which is not considered a constant. By

assuming u;uj proportional to k, the source terms of the Reynolds stress transport
equations become proportional to the source terms of the k-equation. The actual
ARS model equation and a detailed discussion on ARS modeling are presented by
Rodi [1980] and Lakshminarayana [1986]. Since k and € appear in the ARS model
equations, a k-¢ turbulence model must be solved in order to complete the model.
It may be considered that the algebraic expressions of the ARS model coupled with
the k and € equations form an extended k-€ model. ARS models simulate the tur-
bulent stresses more realistically because the isotropic stress assumption, associated
with two-equation models, has been eliminated and each Reynolds stress may be
calculated based on the local conditions. The ARS model is computationally inex-
pensive and can directly account for the effects of buoyancy, rotation, streamline
curvature, nonisotropic strain fields, and wall-damping influences directly instead

of through modeling.

One type of turbulence model that has just recently begun to produce sig-
nificant results are large-eddy simulation (LES) models. These models solve the
three-dimensional time-dependent full Navier-Stokes equations for the large-scale
turbulence, but use models for the smallest scales, which are difficult to compute at
high turbulent Reynolds numbers. In general, higher-order statistical properties,
such as Reynolds stress and turbulent heat flux, take longer to numerically reach
steady state than lower order terms, such as k and €. The LES model truncates
time-dependent computations at small scales, to ensure a converged solution, and
models the smaller scales based on the fact that smaller scales adjust faster to
changes in local conditions. Recent work with LES models has been able to simu-

late the main features of turbulent flow experiments.
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The final turbulence prediction method considered is direct simulation. This
technique involves the direct solution of the time-dependent full Navier-Stokes
equations without the use of any models. Since supercomputers have recently be-
come available, direct simulation has begun to make contributions to predicting
some flows, but still requires tremendous computational efforts. The simulation
capability is restricted to low-Reynolds number flows because for fully developed
high-Reynolds number turbulent flow the range of eddy sizes, i.e. scales, is too
great to be calculated on any computer.

1.3 Overview of Numerical Transition Studies

This section outlines various numerical transition studies from the open lit-
erature that report prediction of heat transfer and friction distributions for various
geometries. The use of zero-equation and one-equation turbulence models to sim-
ulate transition is briefly outlined. However, the major emphasis is on the use of
the two-equation turbulence model to predict boundary layer transition.

One of the first investigations into describing the onset of transition was
conducted by Emmons [1953]. While observing flow in a water-table, Emmons
noted the creation of tiny spots of turbulent flow emanating from point sources in
an otherwise laminar boundary layer. The turbulent spots grew as they were swept
downstream and eventually coalesced into a fully turbulent boundary layer. From
these observations, Emmons proposed that transitions from laminar to turbulent
flow occur through the creation, growth, and coalescence of turbulent spots.
Therefore, at any location downstream of a point source the flow will be intermit-
tently turbulent; that is, the location will be laminar except during the time which a
turbulent spot is convected over it. Emmons analytically described transition as a
random phenomena, which can be described by a probability function specifyirig
the fraction of time that the flow at each point is turbulent. This probability func-
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tion is called the intermittency factor, ¥, which represents the fraction of time any
point spends in turbulent flow. Riley and Gad-el-Hak [1985] have compiled an
outline of the present knowledge of turbulent spots including detailed flow-

visualization.

Dhawan and Narasimha [1958] developed an expression for a universal in-
termittency distribution for transitional flow based on Emmons’ work. Several
transition models, called intermittency models, have been developed from Dhawan
and Narasimha's universal intermittency expression. Basically, an intermittency
model modifies the magnitude of the turbulent viscosity (i.e. fegr = L + Y,) from a
fully laminar flow (y = 0) to a fully turbulent flow (y=1). By modifying the tur-
bulent viscosity, the intermittency model controls the path of the transition process.
To use an intermittency model other empirical correlations must be used to estimate
the starting location of transition and the length of the transition region. Intermit-
tency models have been used with zero-equation to two-equation turbulence models
in an attempt to simulate transition; however, the resulting predictions are only as
accurate as the correlations for the start and end of transition and the ability of the
intermittency function to describe the path of transition.

McDonald and Fish [1973] used a one-equation turbulence model to inves-
tigate the effects of surface roughness and freestream turbulence on the location and
extent of transition from a laminar to fully turbulent boundary layer. A damping
function was used to control the growth of the mixing length in the viscous sub-
layer, which in turn controlled transition. McDonald and Fish obtained excellent
numerical comparison of the heat transfer distribution with experimental data for
flat plate flow with zero pressure gradient. Their comparison of numerical heat
transfer distributions for a turbine airfoil were reasonable given the limited experi-
mental information for their model development.

The goal of Forest [1977] was to develop a numerical procedure for design
purposes to predict transitional boundary layers occurring on turbomachinery
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blades. Because of the simplicity and low computational time, Forest used the
Patankar and Spalding [1970] numerical code with an intermittency model coupled
with a zero-equation turbulence model. His numerical predictions for the shape
factor, momentum thickness, and heat transfer distributions were in good agree-
ment with experimental flat plate zero pressure gradient data. In calculating the heat
transfer distribution for a relaminarization boundary layer, Forest noted a lag in his
numerical calculations when compared to experimental data. The comparison of the
heat transfer distributions for a turbine cascade was reasonable. On the suction sur-
face the overall predictions were good but lacking in the transition region. On the
pressure surface the competing effects of the high freestream turbulence (promoting
transition) and high acceleration (delaying transition) produced long regions of
transitional flow which resulted in poor heat transfer predictions.

The goal of Hylton et al. [1983] was to asses the capability of available
modeling techniques to predict turbine airfoil heat transfer by acquiring experimen-
tal data for numerical comparisons and improve the numerical techniques. They
used three sets of open literature data to determine which numerical model they
would focus on for improvements. The boundary layer models investigated were
an integral method, a finite-difference method with a zero-equation model
[Crawford and Kays, 1976], and the same finite-difference method with a Jones
and Launder [1973] two-equation model. The transition model for the integral
method consisted of an instantaneous transition from laminar to turbulent flow at a
critical momentum Reynolds number. Both finite-difference models used an inter-
mittency model to simulate transition. Based on comparison with open literature
turbine data, the finite-difference model with the zero-equation turbulence model
was selected for further study. Hylton et al. cited the transition models as the weak
element in the overall modeling of turbine blade heat transfer; the simple intermit-
tency models led to poor predictions. Hylton et al. conducted a thorough investi-
gation into the calculation ability of several transition start models, transition length
models, transition path models, and zero-equation turbulent viscosity models to
simulate heat transfer distributions. They concluded that the available intermittency



models lead to generally poor predictions on both the suction and pressure sur-
faces. The principal failure of these models was that the numerical transition com-
pleted more rapidly than experimental measurements indicated. As a result, Hylton
et al. developed a zero-equation turbulence model that modified the turbulent vis-
cosity based on the freestream turbulence level. The resultin g transition calcula-
tions were based on the "natural transition" capability of the zero-equation model.
The researchers also proposed a methodology for calculating good initial profiles
and boundary conditions in order to enhance accurate heat transfer results.

Other investigations into the use of zero-equation turbulence models cou-
pled with an intermittency model to numerically predict turbine blade heat transfer
distributions include the work of Roberts and Brown [1984] and Gaugler [1985].
Park and Simon [1987] is an excellent reference for the use of zero-equation mod-
els to predict transitional boundary layer heat transfer. The relative success of zero-
and one-equation turbulence models to simulate transition has created interest in
determining the ability of higher order turbulence models to predict transition.

Launder and Spalding [1974] were amon g the first researchers to publish
work related to the use of k-€ turbulence models to simulate transition. Launder
and Spalding published the numerical transition predictions of Priddin [1975] for
the gas turbine blade data of Turner [1971)]. Priddin is credited with demonstrating
the ability of the k-& numerical procedure to simulate transition of external boundary
layers. Launder and Spalding noted the effect of hi gh freestream turbulence on tur-
bine blade transition predictions. For hi gh freestream turbulence intensities, i.e.
Tu, (Tu ~ 6.0%), the blade was nearly completely turbulent. For intermediate tur-
bulence levels (Tu ~ 2.0%), the blade was laminar until the 40% chord location,
then became turbulent. At low turbulence levels (Tu < 0.4%), the blade remained
laminar. Priddin did not use a transition model; therefore, Launder and Spalding
believed the low-Reynolds number k-¢ turbulence models have their own built in
“transition criteria." Priddin's numerical calculations were started near the stagna-
tion point of the blade, resulting in laminar initial profiles. No other details about
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the numerical procedure, specifically the creation of the initial profiles, were

provided.

Wilcox [1975] used the Saffman {1972] k-w? turbulence model to examine
the effects of freestream turbulence levels on the simulation of transition for incom-
pressible flat plate boundary layers. Wilcox simulated transition by modifying two
empirical constants of the k-@? governing turbulence equations as a function of the
turbulent Reynolds number (Re, = k/owv). Wilcox denoted the x-Reynolds number
for the start of transition, Re,, as the point where Cyis observed to deviate from
the laminar value by more than 5%. Below the critical value of Re,t, Wilcox noted
little or no amplification in turbulent kinetic energy (TKE), which signified the ex-
istence of a laminar boundary layer. However, when Rex approached Rey!, an
abrupt increase in TKE was observed, followed by an asymptotic approach to a
value characteristic of fully turbulent flow. Wilcox identified the transitional regime
as the range over which TKE increases from its initially low level to a much higher
value in the turbulent regime. The transitional regime could also be identified from
the numerical boundary layer characteristics by locating an abrupt change in the
momentum thickness, shape factor, local friction coefficient, or Stanton number.
Wilcox also noted similar results to Launder and Spalding, namely that an increase
in freestream turbulence level caused the x-location for the start of transition to

move upstream.

Dutoya and Michard [1981] used the Jones and Launder [1973] low-
Reynolds number k-€ turbulence model to examine a developing turbine blade
boundary layer and the resulting heat transfer distribution. Two model constants
for the e-equation were numerically optimized to simultaneously fit existing data for
decay of isotropic turbulence, equilibrium turbulent boundary layer along a flat
plate, and the onset of transition. Dutoya and Michard essentially used a standard
k-g turbulence model with two of the model constants adjusted to simulate transi-
tion. The initial profiles for all dependent variables were based on a Blasius veloc-
ity profile. Dutoya and Michard stated that the starting calculations were conducted
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at Re, = 103, but could be defined for Re, < 10# (meaning shorter computer run
times) without affecting the calculations. The numerical friction coefficient
distribution for flow over an adiabatic flat plate were similar to other studies.
Dutoya and Michard observed a rapid rise in the TKE profile at the onset of transi-
tion, similar to Wilcox [1975], and their comparison of the calculated displacement
thickness Reynolds number data at the onset of transition matched the experimental
data of McDonald and Fish [1973]). Good heat transfer predictions were obtained
for flow along the suction side of a turbine blade, but the calculation trend on the
pressure surface was to relaminarize the flow, which did not match experiment.
Dutoya and Michard believed their program could not account for the complex na-
ture of the transition process, but believed their method was a convenient way of
calculating a boundary layer from near the stagnation point, through transition, to
fully turbulent flow at a low computational cost.

Daniels and Browne [1981] evaluated five numerical programs to determine
their heat transfer prediction capability for simulating the experimental gas turbine
data of Daniels [1978]. The various turbulence models of the five codes varied
from zero-equation turbulence models to a k-w? turbulence model. The various
transition models of the five codes varied from an empirical input of experimental
transition location data, to the transition correlations of Forest [1977], and to the
transition model of McDonald and Fish [1973]. The comparisons of the numerical
results with Daniels’ experimental data showed general agreement in the laminar
leading edge region and for the fully turbulent region on the blade suction surface.
The numerical predictions were poor for the entire blade pressure side due to the
complex flow field, and in the transition region on the suction side. Daniels and
Browne concluded that with the limited data available, no distinct advantages were
seen for using a more complicated two-equation turbulence model over the simple
mixing length model to calculate turbine blade heat transfer on the turbine blade
suction surface. The major difficulties of all the methods examined were the pre-
diction of transition and the effect of freestream turbulence on the laminar boundary

layer.
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Arad et al. [1982] used the two-equation turbulence model of Ng [1971]
with the low-Reynolds number functions of Wolfshtein [1970] to numerically pre-
dict transition from laminar to turbulent flow for a compressible axisymmetric
boundary layer around a body of revolution. No transition model was used with
the two-equation model; instead, transition was initiated by the diffusion of TKE
and length scale into the boundary layer from the freestream. This type of model
employs the "natural transition" capability of a two-equation turbulence model. The
numerical predictions for transition Reynolds number based on displacement thick-
ness, Reg,, agreed reasonably well with the data of McDonald and Fish [1973].
Arad et al. noted that as the freestream length scale decreased (meaning an increase
in freestream dissipation rate), Reg, increased, and as the freestream length scale
increased (meaning a decrease in freestream dissipation rate), Reg, decreased. As
expected, if the freestream length scale increases, more TKE will diffuse into the
boundary layer promoting "natural transition" at a lower Reg,. No discussion on
the transition length, initial profile sensitivity, or initial starting location was pro-
vided. There was also no mention by Arad et al. concerning calculations for flows

with pressure gradients.

Hylton et al. [1983], as mentioned earlier, examined the use of the Jones
and Launder [1973] low-Reynolds number turbulence model in the STANS
[Crawford and Kays, 1976] two-dimensional boundary layer code to predict the
heat transfer distribution associated with their experimental turbine blade data and
other open literature data. An intermittency model was used to simulate transition
with the two-equation model. Hylton et al. realized that two-equation models had a
"built in" transition model (which produces "natural transition") but they were
attempting to see if the intermittency could be used to augment the "natural transi-
tion" of the two-equation model. They did not numerically predict any flow transi-
tion when using the two-equation model to simulate turbine blade heat transfer, due
mostly to a numerical suppression of the inward diffusion of TKE from the outer
boundary layer region. They did attempt to examine a combined high-Reynolds
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number and low-Reynolds number turbulence model to open literature data but
unreliable heat transfer predictions caused them to pursue a zero-equation turbu-

lence model approach.

Wang et al. [1985] applied the low-Reynolds number two-equation model
of Jones and Launder [1973] in the STANS [Crawford and Kays, 1976] boundary
layer code to examine the turbine blade heat transfer measurements of Hylton et al.
[1983] and Turner [1971]. No transition model was specified. Wang et al. be-
lieved that the difficulty encountered with two-equation models could be attributed
to improper initial profiles and boundary conditions for TKE and turbulent dissipa-
tion rate (TDR) in the airfoil leading edge region. A two-zone model was devel-
oped to calculate the dissipation of TKE and TDR in the freestream boundary layer
for the stagnation region. In the first zone, the freestream TKE and TDR boundary
conditions do not dissipate until a "critical velocity" is reached. In the second zone,
at the critical velocity point, the freestream TKE and TDR boundary conditions are
allowed to dissipate. The critical velocity for the turbine blade pressure and suction
surfaces are different because of the different flow fields around the leading edge.
Friction coefficient data for flat plate zero pressure gradient simulations was
presented but no comparison was made with experimental data. For turbine blade
simulations, the heat transfer calculations of Wang et al. agreed reasonably well
with experimental data. On the suction surface of the blade, the heat transfer pre-
dictions were high in the transitional and turbulent region. On the pressure surface,

the general trends in the experimental data were matched.

Rodi and Scheuerer [1985a, 1985b] coupled the low-Reynolds number
model of Lam and Bremhorst [1981] together with an empirical method for pre-
scribing initial profiles for TKE and TDR to control transition and numerically pre-
dict the heat transfer measurements of Blair and Werle [1980, 1981] and Daniels
and Browne [1981]. Transition prediction methods coupled with two-equation tur-
bulence models up to this point have modeled transition by controlling the TKE and
TDR freestream boundary conditions, resulting in a control of the diffusion rate of
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the turbulence quantities from the freestream. Rodi and Scheuerer believed em-
pirical information must also be supplied in the initial turbulent profiles in order to
obtain satisfactory transition predictions. They conducted a sensitivity analysis of
the transition calculations to prescribed initial and boundary conditions. Their re-
sults yielded an method for obtaining TKE and TDR initial profiles that improved
transition predictions. An empirical coefficient, a;, used to define the TDR initial
profile, was calibrated against the flat plate data of Blair and Werle to match the
numerically predicted transition Reynolds number to the experimental data. A
graph of a; versus turbulence freestream turbulence intensity was formulated from
the calibration tests. This a; constant was used to adjust the initial TDR profile
which in turn adjusted the numerical transition predictions. In modeling the data of
Daniels and Browne, Rodi and Scheuerer obtained good predictions for the suction
surface heat transfer with discrepancies occurring only in the transition region
where the numerical method calculated a shorter transition length than experimen-
tally measured. On the pressure surface, Rodi and Scheuerer obtained excellent

heat transfer predictions.

Zerkle and Lounsbury [1987] applied the initial profiles proposed by Rodi
and Scheuerer [1985a] and the Lam and Bremhorst [1981] turbulence model in
their version of STANS [Crawford and Kays, 1976] to examine the heat transfer of
Blair and Werle [1980] and several turbine blade cascades. Overall, the numerical
results matched the experimental data reasonably well except in the transition

region.

Recent work by Schmidt [1987] has been an extensive investigation on pre-
dicting boundary layer transition with two-equation turbulence models. Schmidt's
work was two-fold. First, he investigated the basic "mechanics" of turbulent flow
predictions with two-equation models to document their behavior before attempting
to model more complex flows. Second, he proposed a transition model used to
control the path of transition resulting in more accurate predictions in the transition
region. Schmidt conducted a thorough investigation into the effects the TKE and
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TDR initial profiles of Rodi and Scheuerer have on transition and described
guidelines for their use. Schmidt evaluated the numerical characteristics of the Lam
and Bremhorst [1981] and Launder and Sharma [1974] two-equation models. In
the process, he discovered and put forth corrections to slight numerical instabilities
in the models. As discussed by Wilcox [1975], ransition may be identified by an
abrupt increase in the boundary layer TKE. Schmidt proposed a method for
simulating the path of transition by controlling the growth rate of the production of
TKE in the boundary layer. The proposed model controlled the time rate-of-change
of the production of TKE which is converted to spatial coordinates through the
local convection velocity. This model was termed a production term modification
model or PTM model. The transition model parameters were calibrated against the
experimental work of Abu-Ghannam and Shaw [1980] to allow the model to
modify the production of TKE based on the local freestre... turbulence level. The
comparison of Schmidt's numerical heat transfer predictions with the experimental
flat plate data of Blair and Werle [1980,1981] and Rued and Wittig [1984] along
with the turbine blade data of Daniels and Browne [1981] and Hylton et al. [1983]
produced very good results even in the transition region. The unique aspect of
Schmidt's transition model is its flexibility and ease with which it may be imple-

mented into any two-equation turbulence model.

Johnson [1987] developed a spatially-based transition model, similar in
form to Schmidt's transition model, and coupled i1t with the K. Y. Chien [1982]
two-equation turbulence model in TEXSTAN (described in Section 1.5). Johnson
calibrated the transition model constants against the flat plate transition data of Blair
and Werle [1980, 1981}, then compared various experimental gas turbine blade
heat transfer distributions to his numerical heat transfer calculations. The numerical
calculations of the heat transfer distributions for the Blair and Werle data generally
matched, even in the transition region. The comparison of Johnson's numerical
heat transfer predictions with the various cylinder flows and turbine blade heat
transfer data demonstrated difficulty in the transition region for the suction surfaces
and consistent under-prediction of the pressure surface heat transfer. Johnson
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attributed some of the possible numerical error on inadequate specification of the
far-field velocity and turbulence intensity for some of the experimental data sets.

Sullivan [1988] investigated the use of the K. Y. Chien two-equation model
coupled with two different transition models in TEXSTAN to simulate the experi-
mental heat transfer data for flat plate and circular cylinder flow. Sullivan examined
the use of an intermittency model and the PTM model developed by Schmidt.
Sullivan obtained good results for the experimental heat transfer distribution for
both flow fields using the PTM model but some discrepancies in predicting the start
of transition for the cylinder flow were present.

A review of the literature indicates that the low-Reynolds number two-
equation turbulence model has the potential for modeling the qualitative aspects of
flow transition. However, there are two important criteria that must be met before
the modeling of transition can possibly be attained. First, the prediction of transi-
tion will only be as good as the turbulence model used with it. Therefore, a de-
tailed knowledge of the prediction capability of the turbulence model for laminar
boundary layers is just as important as in fully turbulent boundary layers. Second,
the specification of "physically" correct boundary and initial conditions are impor-
tant because the "natural transition” capability of two-equation turbulence model,
as well as any transition model, will be influenced by unrealistic starting condi-
tions. Only when these two criteria are met, can the prediction capability of a tran-
sition model be evaluated and improved.

1.4 Overview of Experimental Transition Studies

The purpose of this section is to outline available experimental transition
studies from the open literature that detail enough flow field information to allow
numerical transition model behavior to be assessed. Information about the behavior
of proposed transition models can not be completely assessed because some ex-
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perimental data ir: the open literature do not provide enough information about the
freestream turbulence quantities. Hylton et al. [1983] discussed the importance of
boundary and initial conditions on the numerical prediction of turbine blade heat
transfer distributions. As discussed previously, two-equation turbulence models
display a "natural transition” which is a function of the diffusion of TKE and TDR
into the boundary layer from the outer region. Therefore, a requirement for accu-
rate transition simulations depends on a knowledge of freestream TKE and TDR
distributions from experimental data. At a minimum, the freestream turbulence in-
tensity, Tu,, must be specified at two locations in order to calculate the initial
freestream value of TDR. In general, the more experimental freestream turbulence
intensity data available, the more accurate the initial freestream value of TDR may

be calculated.

In the literature review conducted by Schmidt [1988], an outline of experi-
mental data available in the open literature containing enough information about
experimental freestream turbulence levels was presented. Schmidt determined the
experimental data of Blair and Werle [1980, 1981, 1983a and 1983b], Reud and
Wittig [1985], and Wang et al. [1985] are currently the only experimental data
available that provide enough freestream turbulence data to accurately calculate TKE

and TDR initial conditions.

Blair and Werle [1980, 1981, 1983a, 1983b] investigated the laminar to
turbulent transition occurring over a heated flat plate subjected to various freestream
turbulence intensities and pressure gradients. The objectives of their study were to
accurately determine the magnitude the effects of freestream turbulence has on tur-
bulent boundary layer heat transfer and to provide a thoroughly documented set of
experimental data for use in improving the analytical modeling of this phenomena.
The experimental tests consisted of both zero pressure gradient flow and constant
acceleration flow. The total wall-to-freestream temperature difference was ap-
proximately 15 K. The range of freestream turbulence intensities for the test cases
were approximately 0.25% to 7%, generated by four different turbulence generat-
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ing grids upstream of a contraction in the test section. The freestream velocity was
30.3 m/s and the test section pressure was ambient. Blair and Werle measured all
three normal components of the Reynolds stress, the Stanton number distribution,
and the freestream turbulence intensity for the entire length of the test section.

Reud and Wittig [1984] obtained experimental data on the effects of
freestream turbulence, wall cooling, and strong favorable pressure gradients on the
laminar to turbulent boundary layer transition. For these tests the freestream tur-
bulence was generated by grids and provided turbulence intensity levels from 1.6%
to 11%. Reud and Wittig measured only the u'2and v 2 turbulence components,
and the w 2 component was assumed to be equal to the v'2 component. Turbu-
lence intensity and Stanton number distributions are provided for the entire test

section.

Wang et al. [1985] focused on the effect of freestream turbulence intensity
on transition. Profiles of velocity, temperature, Reynolds normal stress (u_'z), and
Reynolds shear stress (W) were measured along with Stanton number and friction
coefficient distributions. The turbulence intensity levels investigated were 0.7%
and 2.0%.

A special note must be made for the experimental work conducted by Abu-
Ghannam and Shaw [1980). An important relationship in transition modeling is the
knowledge of the start and end of transition. Abu-Ghannam and Shaw detailed
past experimental efforts for a correlation between momentum thickness Reynolds
number and freestream turbulence intensity. With this knowledge and their own
experimental work, Abu-Ghannam and Shaw developed correlations to predict the
start and end of transition as a function of freestream turbulence intensity for zero
and non-zero pressure gradient flows. These correlations are based on many ex-
perimental data sets and therefore are not biased to any particular set of experimen-

tal results.
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1.5 Description of TEXSTAN

This section outlines the computer code, TEXSTAN, that was used in this
study to numerically solve the governing boundary layer equations. TEXSTAN is
based on the STANS boundary layer program developed by Crawford and Kays
[1976]. The finite-difference numerical scheme of TEXSTAN is based on the nu-
merical algorithm by Patankar and Spalding [1970], with additional changes incor-
porated by Pietrzyk [1985] and Benton [1985].

TEXSTAN solves the steady two-dimensional parabolic differential equa-
tions that govern boundary layer flow. This program sequentially solves the mo-
mentum equation and any number of diffusion, e.g.. transport, equations, such as
stagnation enthalpy, TKE, TDR, and mass concentration governing equations. The
equations solved by TEXSTAN are transformed using a nondimensional stream
function, then integrated over a finite control volume to obtain finite-difference
equations for each grid point in the calculation domain. This discretization tech-
nique is known as a control-volume formulation and is described in detail by
Patankar [1980]. A number of different source terms may be included in the trans-
port equations. In the momentum equation, buoyancy effects and an axially vary-
ing general body force may be considered. In the energy equation, viscous dissi-
pation, internal heat generation, and body force work terms may be included.

TEXSTAN can be used to analyze a variety of flow geometries. An ax-
isymmetric coordinate system is adapted so it may easily be converted to a cartesian
coordinate system by setting the radius of curvature to unity. TEXSTAN has the
capability of solving both external boundary layer flow for flat plate or axisym-
metric bodies of revolution and internal boundary layer flow for circular pipes, par-
allel planes, or concentric annuli. The external flow capability was used throughout

this study.
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TEXSTAN has the capability of modeling different boundary conditions.
For external flows, the freestream conditions for velocity, stagnation enthalpy,
TKE, and TDR are provided as level specifications while the wall conditions may
be specified as either a level or flux. The user may specify the initial profiles of the
dependent variables from experimental data or the automatic profile generator in
TEXSTAN may be used. For this study, a computer code, TEXIPBC, was devel-
oped by the author to calculate "physically” correct boundary conditions and initial
profiles for transitional studies. An outline of TEXIPBC is discussed in Chapter 3.

Fluid properties may be treated as constant or variable. Constant properties
are supplied by the user, while the variable fluid properties are supplied through
property subroutines that are essentially tabulated fluid properties. This research
used air as the working fluid.

Several different turbulence models are incorporated in TEXSTAN, all of
which use the mean field closure approximation. The turbulence models consist of
a Prandtl mixing length zero-equation turbulence model and several two-equation k-
€ turbulence models. Provisions for laminar-to-turbulent transition is available for
the Prandtl mixing length model using a critical momentum thickness Reynolds
number criteria to adjust the van Driest damping function until the flow is fully tur-
bulent. No transition model is provided for the two-equation turbulence models.

1.6 Thesis Qutline

This chapter has described the basic goals of the thesis and provided rele-
vant background information on the modeling of external heat transfer on gas tur-
bines. The environment of the gas turbine has been detailed with emphasis on the
characteristics of the flow field that must be numerically modeled. An overview of
turbulence modeling was presented to familiarize the reader to various methods
used to numerically model turbulence. Relevant numerical investigations from the



open literature for simulating turbine blade heat transfer distributions were pre-
sented to detail the performance of past methods and provide insight into the be-
havior of turbulence modeling. Available experimental data providing important
turbulence information required for accurate evaluation of turbulence models was
detailed. An outline to the numerical boundary layer code, TEXSTAN, used in this

thesis was discussed.

Chapter 2 provides the mathematical derivation of the boundary layer gov-
erning equations solved by TEXSTAN. The governing equations consist of the
time-averaged momentum and stagnation enthalpy equations along with the k-€
transport equations used for mean field closure. The K. Y. Chien [1982] and
Launder and Sharma [1974] two-equation turbulence models are outlined, along
with a discussion of the two transition models originally proposed to be investi-

gated by this thesis.

Chapter 3 details the process used by TEXIPBC to generate "physically”
correct boundary conditions and initial profiles required for a well-posed numerical
simulation. The need for a smooth freestream velocity distribution to calculate and
accurate pressure gradient is examined. Two methods for obtaining valid initial
TKE and TDR levels for calculating proper decay of the freestream turbulence
quantities are presented. Also, a solution to a problem associated with the
freestream length scale distribution for the K. Y. Chien [1982] two-equation model

1s discussed.

Chapter 4 assesses the criteria for the proposed initial TKE and TDR pro-
files and their effect on the "natural transition" predictions of the K. Y. Chien
[1982] two-equation turbulence model. Numerical calibration of the k-equation
production modification, last proposed by Schmidt [1987], is developed for the K.
Y. Chien turbulence model, along with comparisons of the numerical transition

prediction capability with experimental flat plate heat transfer distributions. It is at
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this point that the problem associated with using the K. Y. Chien two-equation
model for transition studies is detailed.

Chapter 5 provides a summary of the conclusions formulated in this thesis,
and a brief discussion of recommendations for future work is presented.



Chapter 2

Mathematical Description of Two-Dimensional Boundary Layer Flow

2.0 Introduction

In fluid flow, the boundary layer is a thin region close to a solid body
where vorticity exists and viscous effects are important. Boundary layers over flat
surfaces with sharp leading edges start laminar then, due to flow instabilities, tran-
sition and become turbulent boundary layers. This process also occurs on a wide
variety of surfaces of engineering importance such as heat exchanger fins, airfoils,
and nozzles. Various engineering design factors, such as local friction coefficient
and heat transfer, may be predicted through the solution of the governing boundary
layer equations, provided the pressure distribution over the surface is known. This
chapter outlines the governing boundary layer equations that are numerically solved
by TEXSTAN for both laminar and fully turbulent flow. These governing equa-
tions consist of the time-averaged continuity equation, momentum equation, and
stagnation enthalpy equation for flow of a variable property fluid. The turbulent
transport equations for two-equation mean field closure are outlined as well as the

proposed transition models used in this study.

The basic characteristic of a turbulent flow is that the velocity field is time
dependent; however, any attempt to describe the velocity field as a function of time
is difficult. A measurement at a point in a steady turbulent flow field yields a ve-
locity that fluctuates in an irregular manner around a steady time-independent ve-
locity (i.e. mean velocity). The fluctuating velocity components are time-depen-
dent. Since the fluctuating components tend to be small relative to the mean veloc-
ity, a statistical approach of time-averaging is applied to the time-dependent velocity
components, thus allowing the flow to be treated as if it were steady. In other

33
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words, in the context of time-averaging, the mean values are examined over a suffi-
ciently long interval of time that they are considered independent of time. In the
equations that follow, a Reynolds decomposition method is used to express the in-
stantaneous dependent quantities (denoted by "~") into mean (denoted by upper
case) and fluctuating (denoted by primes) components. As an example, the
Reynolds decomposition of the instantaneous streamwise (x-direction) and instan-
taneous cross-stream (y-direction) velocity components are

U=U+u, (2.1

and
V=V+y. (2.2)

Fluid properties are assumed to be variable but without fluctuatin g components,
Therefore, the properties may be expressed as

density: p=p, (2.3)
dynamic viscosity: H =Hu. (2.4)

To develop the governing turbulent boundary layer equations, the
Reynolds decomposition expressions for the dependent variables are substituted
into the instantaneous governing equations, then the equations are averaged over
time. The resulting boundary layer equations for turbulent flow contain new terms,
such as Reynolds stress and turbulent heat flux terms, that must be modeled using

some form of turbulence models.

2.1 Boundary Layer Assumptions

Figure 2.1 is a sketch of the geometry, x-y coordinate system, and basic
nomenclature used to describe a boundary layer. Shown in Figure 2.1 is a bound
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ary layer region where the fluid velocity changes from a freestream value, U,, to
zero at the wall. For y-distances greater then the boundary layer thickness, 8, the
flow field vorticity vanishes and the flow is considered inviscid and may be de-
scribed by Euler equations. On the other hand, the boundary layer region has par-
ticular characteristics which allow the full Navier-Stokes equations to be simplified.
These simplifying boundary layer characteristics are termed boundary layer as-
sumptions and apply to both the momentum and energy governing equations. This
section outlines the assumptions used to develop the boundary layer equations from
the full Navier-Stokes equations.

If the boundary layer thickness () is small relative to all other flow dimen-
sions, then the following conditions must hold for a two-dimensional boundary
layer

U>V (2.5)

and

oU __ U oV aV

5o 2> 5o 3o A 2.

dy ox’ ox’ dy (2.6)
Consistent with equations (2.5) and (2.6) in which the flow is predominantly in the
x-direction, an examination of the y-momentum equation demonstrates that the
cross-stream pressure gradient is approximately zero. As a result, the pressure
gradient becomes only a function of the x-location

oP
gy— = 0 2.7)
and
P _4p
ox  dx° (2.8)

Integrating equation (2.7) across the boundary layer proves the pressure normal to
the boundary layer is constant and may be assumed equal to the pressure at the



outer edge of the boundary layer. The pressure is said to be "impressed" on the
boundary layer by the outer flow [Schlichting, 1979]. The freestream pressure is
calculated using an inviscid flow calculation. Equations (2.5) to (2.8) are the
boundary layer approximations for the momentum equation.

When there is heat ansfer between the fluid and the surface of a body, the
temperature changes occur within the thermal boundary layer. As with the momen-
tum boundary layer, the thinness of the thermal boundary layer (A) allows the fol-

lowing condition to hold

oT __ oT
- — 2
3y O ax (2.9)
Equation (2.9) is the boundary layer approximation for the thermal boundary layer.
This approximation states the cross-stream temperature gradients are much larger

than the streamwise temperature gradients.

2.2 Continuity Equation

The law of conservation of mass states that mass can not be created or de-
stroyed. The instantaneous continuity equation is

a_p+a(pU)+a(pV)+a(pW)=0 10
& ox dy dz : 10)
By time-averaging equation (2.10) using standard averaging rules [Kays and
Crawford, 1980), the time-averaged continuity equation is defined as

a(pU)+a(pV)+8(pW)

Ix 3y % 0. (2.11)
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Subtracting equation (2.11) from equation (2.10) yields the fluctuating continuity

equation.

dpw) apv) Apw') _
ox dy oz )

(2.12)

Equations (2.11) and (2.12) show that the mean and fluctuating velocity compo-
nents each separately satisfy the continuity equation. The continuity equation is not
solved directly by TEXSTAN due to the variable transformation from primitive
velocity variables to a compressible stream function, that is subsequently nondi-

mensionalized.

2.3 Momentum Equation

The law of conservation of momentum states that the net force on a control
volume is equal to the time rate-of-change of momentum of the control volume.
The instantaneous x-momentum equation for a two-dimensional flow of a variable
property fluid with negligible body forces is

dpl) , ApU0) a(pVU)__dg ai‘“%tyj} (2.13)

ot ox dy dx
The momentum boundary layer assumptions, equations (2.5) through (2.8), are
used in defining equation (2.13). Time-averaging equation (2.13) and applying
equation (2.11) yields the mean x-momentum equation

pUaa—U+pV = 9—( aU pu_\T} (2.14)



In equation (2.14), the left-hand terms represent the convective transport of mo-
mentum in the boundary layer by the mean flow. The first term on the right-hand
side represents a momentum source term, namely the pressure gradient, and the
second term on the right-hand side represents the molecular and turbulent diffusion

of momentum in the boundary layer.

The turbulent diffusion term in equation (2.14), -pE', is created by the
time-averaging of equation (2.13). This new term is called the turbulent Reynolds
stress. A companion term arises, the x-gradient of p{JT , but is neglected com-
mensurate with the boundary layer assumptions. The Reynolds stress is the contri-
bution of turbulent motion to the boundary layer stresses and plays a significant
-ole in the transfer of momentum by turbulent motions. Fora two-dimensional
boundary layer, -pE' is the dominant Reynolds stress term, except in the viscous
sublayer. Examining equation (2.14) shows there are three unknowns, U, V, and
pu—\j , but only two equations, continuity and x-momentum, to solve for the un-
knowns. This inconsistency of equations to unknowns demonstrates the apparent

closure problem in turbulence modeling.

The simplest procedure for solving the closure problem is to develop a
constitutive equation to cescribe the Reynolds stress, and therefore provide a solu-
tion for the boundary layer flow. An approximation is defined to evaluate the
Reynolds stresses by comparing the turbulent Reynolds stress to the corresponding
viscous stresses. The Boussinesq approximation assumes the turbulent stresses act
like the viscous stresses and are directly proportional to the mean velocity gradient
[Hinze, 1975]. This approximation is called mean field closure (MFC) and can as-

sume several forms

— ouU ou ou
-puv = pEM— = PVLE_ = b,
y Jy

dy (2.15)

where €1 is the eddy diffusivity for momentum and y, is the turbulent viscosity.
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The eddy diffusivity depends on the turbulence in the flow, hence it is a
function of position and not a fluid property. The turbulence closure problem re-
duces to calculating ep. The effective viscosity, ey, is defined as the sum of the
molecular viscosity and the turbulent viscosity (Mefr = W + ;). The mean momen-
tum equation is rewritten by combining the effective viscosity and equations (2.14)
and (2.15) to yield

Ua—U+ Va—U = _8_P+ J oU
PUox TP dy ~ dx oy Herfg : (2.16)

Equation (2.16) is the governing boundary layer momentum equation
solved by TEXSTAN for both laminar and turbulent flows in the absence of body
forces. When the flow field is laminar and the turbulent viscosity is zero, equation
(2.16) becomes the steady laminar boundary layer momentum equation.

As discussed by Rodi [1982], the use of low-Reynolds number two-equa-
tion models has become popular because of its ability to model the effects of turbu-
lence history and transport on the velocity and length scale of turbulent motion.
The expression of turbulent viscosity for two-equation models in the form of equa-
tion (1.6) is

2
M = pCpfu'i— , (2.17)
€

where k is the turbulent kinetic energy (TKE) of the flow, £ is the isotropic turbu-
lent dissipation rate (TDR) of the flow, C,. is an empirical constant, and fu is a near
wall damping function. Equation (2.17) is the essence of two-equation turbulence
modeling and may be used in conjunction with equation (2.15) to calculate the
Reynolds stress term of the momentum equation. The nonisotropic dissipation
rate, €, can be related to the isotropic dissipation rate by
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g=¢e+D. (2.18)

In equation (2.18) € is the nonisotropic dissipation rate, possessing a finite wall
value; € is the isotropic dissipation rate, that is zero at a solid wall; and D is the low-
Reynolds number term. The addition of D, discussed later, was proposed by Jones
and Launder [1972] to allow the solution of a transport equation for € rather than €

and still satisfy the finite dissipation rate boundary condition at the wall (i.e. y =0).

The evolution of the turbulent viscosity in equation (2.17) requires the use
of transport equations to describe the evolution of TKE and TDR through the
boundary layer. Appendix A provides details on deriving the TKE and TDR trans-
port equations. The final model form of the TKE and TDR transport equations,
from Appendix A and following Patel et al. [1985], are

U gkwvgg: U \? ,{( ] (pe+D) (219
and
pUg—E+pV—— = leliu ¥ «“ o ay}
{ pC2f2L+ E ] (2.20)

The TKE and TDR transport equations contain five empirical constants: Cu. Gy,
C,, O, and o and three damping functions: f., f1, and fa, along with two

additional terms D and E.

Equations (2.19) and (2.20) are low-Reynolds number forms of a k-€ tur-

bulence model. Jones and Launder [1972] proposed the use of damping functions
fu, f1, and fy, as functions of the turbulent Reynolds number, Re, = k2/ve, to mod-

ify the values of the C-constants so that calculations may be made through the
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buffer and viscous sublayer to the wall. The low-Reynolds number terms (D and
E) modify the isotropic behavior of TDR, for near-wall calculations. All k-€ two-
equation turbulence models are represented by equations (2.19) and (2.20), with
the values of the constants, damping functions, and additional terms distinguishing
the different two-equation models.

In equation (2.19), the left-hand term represents the convective transport of
TKE by the mean flow. The first term on the right-hand side represents the pro-
duction of TKE and simulates the kinetic energy exchange between the mean flow
and the turbulence. Normally this energy exchange involves a loss of mean kinetic
energy from the mean flow and a profit in the TKE of the turbulence. The second
term on the right-hand side is diffusional, i.e. a transport term whose integral over
the boundary layer is zero, and it represents the redistribution of TKE in the bound-
ary layer. This term is composed of both the turbulent diffusion and molecular dif-
fusion of TKE. The third term on the right-hand side represents the viscous dissi-
pation, with the low-Reynolds number term (D) compensating for the zero bound-

ary condition for €.

In equation (2.20), the left-hand term represents the convection of TDR by
the mean flow. The first term on the right-hand side represents the production of
turbulent dissipation by the mean flow. The second right-hand term represents the
molecular and turbulent diffusion of TDR in the boundary layer. The third term of
the right-hand side represents the viscous dissipation of TDR, with the low-
Reynolds number term (E) included to improve the match of the peak level of TKE
with experiment [Jones and Launder, 1972).
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2.4 Stagnation Enthalpy Equation

The law of conservation of energy states that the increase in energy within a
region is the result of work and heat transfer to the region. The instantaneous
boundary layer form of the stagnation enthalpy equation for a variable property
fluid without internal heat generation and body force work is

Aor), 40T, A7) a_qi{ ﬁu@’_} |

ox dy dy dy

(2.21)

where g is the molecular heat flux. The thermal boundary layer assumption, equa-
tion (2.9), is used in defining equation (2.21). The molecular heat flux is formu-
lated using Fourier's law of heat conduction as follows

oT

q-= -ké;, (2.22)

where k is the thermal conductivity and T is the instantaneous static temperature.
The thermodynamic equation of state for a perfect gas relates the instantaneous
static enthalpy to the instantaneous static temperature as shown

dl = cdT (2.23)

where ¢ is the specific heat at constant pressure. The instantaneous static enthalpy
is related to the instantaneous stagnation enthalpy using the following relation

. o~ 2
i=1-U
2 (2.24)

Using equations (2.23) and (2.24), equation (2.22) is recast in terms of the instan-
taneous stagnation enthalpy as shown



~_ ufor 3 Lﬁ)
o524 a2

where k/c is equal to W/Pr. The Prandtl number is used to relates the molecular dif-
fusivity to the thermal diffusivity. Using equation (2.25), equation (2.21) is
rewritten as follows

aI R al _ uax __{ )J
P PV Pray 3 . (2.26)

In equation (2.26) the molecular heat flux term has been recast in terms of a gradi-
ent in stagnation enthalpy, which leads to the more complex form of the viscous

work term.

Time-averaging equation (2.26) and the application of continuity, equation
(2.11), yields the mean stagnation enthalpy equation

or VA _ 9wl == ap 4 aug}
PUSK *PVay B‘y{_—Pray pvi J-‘-B‘y{(l-Pr,ua—y-(Z)- (2.27)

In equation (2.27), the left-hand terms represent the convective transport of stagna-
tion enthalpy in the boundary layer by the mean flow. The first term on the right-
hand side represents the molecular and turbulent diffusion of stagnation enthalpy in
the boundary layer, and the second term on the right-hand side is a source term and
represents both a diffusion and dissipation of energy when the term is expanded.

Equation (2.27) contains a new term, -pv'i*, created by the time-averaging
of equation (2.26). This new term is called the turbulent heat flux. It is the contri-
bution of turbulent motion to the boundary layer temperature distribution and plays



an important role in the heat transfer due to turbulent motion. The companion term,
the x-gradient of p;'—i;, is neglected commensurate with the boundary layer as-
sumptions. As with the momentum equation, there is a closure problem associated
with the solution of the stagnation enthalpy equation. The turbulent heat flux is the
one undefined term in equation (2.27) and requires a constitutive equation in order

to solve the stagnation enthalpy equation.

Before defining the constitutive relation for the turbulent heat flux, an ex-
pression for the fluctuating stagnation enthalpy must be defined. The fluctuating
stagnation enthalpy can be decomposed into a fluctuating static enthalpy and a ve-
locity term, following Kays and Crawford [1980],

i*=i+Uu. (2.28)

Using equation (2.28), the turbulent heat flux may be approximated as

ovit = -pvi + U{-puv). (2.29)

Using a Boussinesq type of mean field closure argument, the turbulent heat
flux is assumed proportional to the mean temperature gradient. Therefore, an eddy
diffusivity for heat transfer (€q) may be defined in the same manner the eddy diffu-
sivity for momentum is defined to relate the Reynolds stress to the mean velocity
gradient. The eddy diffusivity model for heat transfer uses the eddy conductivity
(k) to relate the turbulent heat flux to the mean stagnation enthalpy gradient.
Therefore, the eddy diffusivity model for heat transfer, like the momentum counter

part , can assume several forms

- _ A Kk 9. p2]_ M9 p_u?
-pv1 = EHg; = 'C—l‘g{l ’%—] = Fr_lay I ‘U—:\, (2.30)
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where Pr is the turbulent Prandtl number, formulated as puc/k; in analogy to the
laminar Prandt number. The stagnation enthalpy form of the turbulent heat flux is
formulated by combining equations (2.30) and (2.15) into (2.29), which yields

pvic = B9 2 ofu2]
pvi —Prtayl 2J+utay 2 1. (2.31)

The laminar (molecular) and turbulent conductivity may be expressed in
terms of an effective thermal conductivity (divided by the specific heat, ¢) as shown

(%)eﬁ = %* (%’t : (2.32)

Using equation (2.32) and the definition of the effective viscosity (Uesp), the effec-
tive Prandtl number, Pr., is defined as follows

Hetf = _ Herr

) BB (2.33)
off  pr Pr,

Preg =

(

ox

The mean stagnation enthalpy equation is rewritten by combining the effec-
tive Prandt]l number definition (equation 2.33) and equation (2.31) to yield

al %) 0 Heff aI U2
PUax " Py “ 3yl Prg oy ‘{( eff)“eff‘(z ” (2.34)

Equation (2.34) is the govemning energy equation solved by TEXSTAN for both
laminar and turbulent flows in the absence of thermal heat sources and body force
work. For a laminar flow calculation, the turbulent Prandtl number and turbulent
viscosity are set to zero, and equation ( 2.34) becomes the steady laminar equation.



Turbulence modeling with heat transfer requires specification of the turbu-
lent Prandtl number. For fully turbulent high Reynolds number flows, Priis vari-
able between the wall and the freestream, see for instance Kays and Crawford
[1980]. For the numerical simulations of transitional flows in this thesis, the turbu-

lent Prandtl number was assumed a constant 0.9.

2.5 Two-Equation Turbulence Models

This investigation focuses on the use of the K. Y. Chien [1982] two-equa-
tion low-Reynolds number turbulence model for transition simulations. This sec-
tion presents the empirical constants and damping functions which constitutes the
K. Y. Chien turbulence model. In Chapter 4, the transition predictions of the
Launder and Sharma [1974] low-Reynolds number turbulence model are compared
to the K. Y. Chien model. Therefore this section also presents the empirical con-

stants and damping functions for the Launder and Sharma turbulence model.

K. Y. Chien [1982] developed a variation to the two-equation, low-
Reynolds number turbulence mode! proposed by Jones and Launder [1972]. The
TKE and TDR equations used by Chien are of the form defined by equations (2.19)
and (2.20), with the empirical constants, damping functions, and extra terms de-

fined as follows.

Empirical Constants:

C; = 1.35 (2.35)
C,= 1.8 (2.36)
C, = 0.09 (2.37)

1.0 (2.38)

I

Ok
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o = 1.3 (2.39)
Damping functions:

fu = 1.0- exp( -0.0115 Re, ) (2.40)

fi = 1.0 (2.41)

Re, 2
f = 1.0-0.22exp| - < (2.42)

Low-Reynolds Number Terms:

= k

D=2 o (2.43)
— 20 exry .

E Zuyz CXM O.SRCT ) (2.44)

In the equations shown above, Re, = k2/ve and Rey = y* = yuyv.

Launder and Sharma [1974] developed a two-equation turbulence model
from the low-Reynolds number turbulence model proposed by Jones and Launder
[1972]. The TKE and TDR equations used by Launder and Sharma are of the form
defined by equations (2. 19) and (2.20), with the empirical constants, damping
functions, and extra terms defined as follows.

Empirical Constants:

Ci= 144 (2.45)
Cy= 1.92 (2.46)

Ci.= 0.09 (2.47)



Ok 1.0
05 = 1.3

Damping functions:

fy = exp[——‘—l-ﬂ——]
(1 + Rey/50) 2

fi = 1.0

£, = 1.0 - 0.3exp| - Re2]

Low-Revnolds Number Terms:

. [ovK Y
2..\2

E = 2},1\/(8 v

dy?

2.6 Transition Models

This section presents an outline of the proposed transition models of

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

Schmidt [1987] and Johnson [1987] that are examined in this thesis. As numerical
calculations are marched downstream, TKE is convected and diffused into the

boundary layer from the freestream. As the calculations proceed, the production
term for the TKE equation (P = {1,(0U/dY)?) becomes significant and in turn in-

creases the local value of TKE. With an increase in TKE, the turbulent viscosity
(1) begins to increase (see equation 2.17), which in turn increases Py, which in
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turn feeds the process even more. This nonlinear increase in TKE continues until
the laminar boundary layer "naturally transitions" to a fully turbulent boundary
layer. The transition process is initially controlled by the diffusion of TKE into the
boundary layer from the freestream. This diffusion process may explain why two-
equation turbulence models do not predict transition for low freestream turbulence
intensity levels, as discussed by Launder and Spalding [1974]. It appears that the
diffusion of TKE into the boundary layer and the nonlinear source terms of the
TKE and TDR equations are the driving force for transition. These observations
lead Schmidt to examine ways to modify the behavior of the production term of the
TKE equation during the simulated transition process in order to improve predic-
tions. The slight differences in the two proposed transition models are enhanced by
examining the governing transition model equations.

Schmidt proposed a method of simulating transition by controlling the
growth rate of TKE in the boundary layer. He felt that the process by which small
disturbances are amplified in an unstable boundary layer is time dependent, while
the governing equations are in steady state form. The time scale for the production
modification would simply be related to the local convective velocity. The pro-
posed PTM model Schmidt developed to control transition is

P&} = A*Py+B (2.55)

a[ max
where A and B are empirical parameters.
The idea of using two independent parameters in Schmidt's model was to
control the start and end of transition. Equation (2.55) can be converted from a

time derivative form into a spatial derivative, for use in a boundary layer code, by
using the local convective velocity as follows

APk.max = (A*pk,old + B) % , (2.56)



where APy ., is the the maximum allowable change in the production of TKE at
the current integration step, Py o14 is the level of production of k from the previous
integration step, dx is the the integration step size, and U is the local convective
velocity at the y-location in the boundary layer.

A detailed outline of the numerical implementation of Schmidt's transition
model is not outlined here (for details see Schmidt, 1987) but essentially the model
compares (Py new - Pk.o1d) t0 APk max at each computational grid point, then uses
the minimum value to calculate Py new at each point. In examining the model form
of the TKE and TDR transport equations, it is noted that the production of dissipa-
tion term in equation (2.20) is proportional to the production of TKE term in equa-
tion (2.19). Schmidt did not modify the production of TKE term in the TDR trans-
port equation. The empirical constants, A and B, were determined through a set of
calibration tests designed to isolate the effects of the PTM model from the effects of
the diffusion of freestream TKE. Schmidt provides the calibrated curves for A and
B as a function of freestream turbulence intensity for use with the Lam and
Bremhorst [1981] and Launder and Sharma [1974] two-equation turbulence
models. Schmidt calibrated the A and B curves by adjusting these constants until
numerically predicted start and end of transition agreed with the correlations of
Abu-Ghannam and Shaw [1980].

Johnson [1987] proposed a method similar to Schmidt to numerically pre-
dict transitional flow. Johnson believed the amplification of small disturbances in
an unstable boundary is spatially dependent. The method proposed by Johnson for
controlling the growth rate of TKE and thus controlling the transition process is

—} = a*Py . (2.57)
max

From equation (2.57), the maximum change in Py allowed by the transition model

becomes
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APy max = (0*Py o1a)dx . (2.58)

The numerical implementation of equation (2.58) is similar to the method used by
Schmidt. Johnson used the experimental flat plate zero pressure gradient data of
Blair and Werle [1980] to calibrate the empirical constant, ¢, to match the experi-
mental transition data. Johnson presents a calibration curve for o as a function of
freestream turbulence intensity for the K. Y. Chien two-equation model. In the
process of further evaluating the performance of Johnson's transition model, sev-
eral errors were found in the implementation of the original model, which lead to a

variation of Johnson's transition model.

The University of Texas transition model uses the theme of Johnson's
transition model in conjunction with Schmidt's numerical scheme for calculating the
growth rate of TKE. The University of Texas proposed transition model is

where o and [ are empirical parameters. In early investigations of Johnson's
transition model, it was determined that the B constant is needed in an attempt to
adequately control the end of transition. The maximum chan ge in the production of
TKE for each computational grid point becomes

APy max = {0*Py o1g + B dx . (2.60)

Again, the implementation of equation (2.60) is similar to the method used by
Schmidt.

As mentioned in Chapter 1, the goal of this thesis was to assess the transi-
tion prediction capabilities of Schmidt's transition model (equation 2.55) and The
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University of Texas transition model (equation 2.59) when used in conjunction
with the K. Y. Chien turbulence model. It was hoped that a comparison of the
these two transition models against various experimental transition data sets would
detail the prediction capability of a temporally or spatially based transition model,
focusing on the effect the local convective velocity (see equation 2.56) has on the
modeling of the transition process. However, as discussed in Chapter 4, a problem
associated with the K. Y. Chien model for low-Reynolds number flows was iden-
tified while examining the transition prediction capabilities of Schmidt's transition
model. Therefore, due to the low-Reynolds number problem with the K. Y. Chien
model, the transition prediction capabilities of The University of Texas transition

model are not detailed in this thesis.



Chapter 3

Initial and Boundary Conditions

3.0 Introduction

The partial differential equations describing boundary layer flows are
parabolic, which means the downstream transport properties are dependent, at
most, on the values of the upstream transport properties. The required conditions
to solve a set of parabolic equations are initial profiles for each dependent variable
for all y at a specified x-location and boundary conditions at two positions in space
for each dependent variable at all x greater than or equal to the initial x-location.
The solution of parabolic equations is often carried out using a finite difference
"murching technique” where the solution starts at the initial x-location, i.e. the loca-
tion of the initial profiles, and marches forward in space. Figure 3.1 is an example
of the extent of the computational domain defined for a boundary layer flow. The
solution accuracy for a set of parabolic equations depends on the initial and bound-

ary conditions.

The initial profiles and boundary conditions defining a valid solution are
senerated by a computer code called TEXIPBC, developed as part of this thesis, to
calculate initial profiles and boundary conditions, for laminar or turbulent boundary
layer flows, which are in turn used as input data to TEXSTAN. This chapter de-
tails the method used by TEXIPBC to calculate proper initial and boundary condi-

tions to model transitional boundary layer flows.
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3.1 Initial Profiles

The dependent variables calculated by TEXSTAN are the streamwise veloc-
ity (U), the stagnation enthalpy (I*), the turbulent kinetic energy (k), and the turbu-
lent dissipation rate (E). Well-posed initial profiles are essential to assure accurate
results near the starting x-location. If incorrect initial profiles are implemented, a
solution to the governing equations generally results in an evolution of the profiles
into a form that is compatible with the equations and the boundary conditions.
However, until the profiles are corrected, the wall shear and heat transfer results
will be inaccurate. Furthermore, the profiles that evolve may be sigrificantly dif-
ferent in thickness than were originally specified. This leads to a boundary layer
solution to a flow with a different momentum Reynolds number than initially spec-
ified. This section defines the method used by TEXIPBC to geny Jropriate
initial profiles for the dependent variables. As will be shown, the specification of
initial profiles for U and I* are well documented while the profiles for k and € re-

(uire physical arguments.

3.1.1 Velocity Profiles

If a low-Reynolds number flow flow is considered laminar, the initial ve-
locity profile will be a laminar velocity profile. Consider steady flow without tur-
bulence over a semi-infinite flat plate aligned with the flow, with a constant
freestream velocity, U,, and constant fluid properties. Equations (2.11) and (2.14)

may be rewritten as

au . v _
I + W =0 (3.1)
and
u AU _ U a4
Yt Ve T Vo (3.2)



The pressure gradient term of equation (3.2) is expressed in terms of the
freestream velocity gradient by examining Euler's equation for flow along a

streamline
U2
%}ezz'd(ze)' (3.3)

Differentiating equation (3.3) with respect to x leads to

O

dP - _pydle. (3.4)

X dx

[oR

The freestream velocity is assumed constant over a flat plate, dUy/dx = 0; therefore

equation (3.4) reduces 10

o9

P_yg. (3.5)
X

[

Combining equations (3.5) and (3.2), the momentum equation is rewritten

as

U .9Uu U
oY L V&Y - v
Uax + 5y V8y2 ) (3.6)

The boundary conditions for equation (3.1) and (3.6) are

wall boundary condition for U:  U(x,y=0) 0.0, (3.7)

wall boundary condition for V: V(x,y=0) 0.0, (3.8)

freestream boundary condition for U: U(x,y—e0) = Uex), (3.9)
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One approach to solving equations (3.1) and (3.6) is to use a similarity
transformation which reduces the given partial differential equations to ordinary dif-
ferential equations that are easier to solve. The use of a similarity parameter implies
that the velocity profiles at all x-positions are geometrically similar, differing only
by a multiplying factor in the y-direction. One similarity transformation used fre-
quently for boundary layer flows utilizes the Blasius similarity variable

yYU.

M= T

(3.10)
The similarity transformation of equations (3.1) and (3.6) yields the Blasius

equation (detailed in Kays and Crawford, 1980), where the prime denotes differen-
tiation with respect to

f"+ ff =0, (3.11)

where, f'(n) is the nondimensional wall shear stress; f (M) is the nondimensional
velocity; and f(n) is the nondimensional strean: * -iction. The boundary conditions
(3.7) t0 (3.9) are transformed to 5

f(n=0) = 0, (3.12)
f(n=0) =0, (3.13)
f (n=eo) = 1. (3.14)

There is no analytical solution to the Blasius equation, but it may be solved
numerically. Using the Runge-Kutta routine provided by White [1974], equation
(3.11) is solved in TEXIPBC to provide an initial laminar velocity profile.
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In the stagnation-point region, such as for cylinders in cross-flow and tur-
bine blades, and equations (3.1) and (3.2) govern the flow field since the pressure
gradient is no longer zero. A Falkner-Skan similarity transformation may be used
to transform the partial differential equations of (3.1) and (3.2) into the following
ordinary differential equation

f i +(1-f2) = 0. (3.15)

Equation (3.15) is subject to the same boundary conditions (equations 3.12 to
3.14) as equation (3.11). TEXIPBC may be used to calculate the initial velocity
profile for either a flat plate geometry (equation 3.11) or for a turbine airfoil geome-
try (equation 3.15).

3.1.2 Stagnation Enthalpy Profiles

The initial stagnation enthalpy profile is based on a direct extension of the
similarity solution for velocity profiles. Assume steady flow without turbulence
over a semi-infinite flat plate with constant freestream velocity, constant fluid prop-
erties, and constant plate surface temperature. A constant plate surface temperature
means the thermal boundary layer will develop along with the momentum boundary
layer from the leading edge of the plate. The stagnation enthalpy is nondimen-
sionalized as follows to aid in the analysis of the thermal boundary layer

_ I'xy)- Tdx.y) , (3.16)
Le(x,y) - Iix,y)

where 1 is the nondimensional stagnation enthalpy distribution.

The governing equation for stagnation enthalpy neglecting turbulence fluctuations
and viscous dissipation is written as follows from equation (2.27)
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oar orr o
= Q

U-é—x"f'VW = ay2 .

(3.17)

Equation (3.17) may be written in nondimensional form using equation (3.16),

2
ox dy oy2

(3.18)
Equation (3.18) is the nondimensional stagnation enthalpy governing equation.
Assuming temperature prescribed boundaries, the boundary conditions for equation
(3.18) are

wall boundary condition fort:  t(x,y=0) = 0, (3.19)
freestream boundary condition for T:  T(x,y—e) = 1. (3.20)

Equation (3.18) is similar to equation (3.6), which is the hydrodynamic
equivalent to this problem. A similarity transformation for equation (3.18) is de-
veloped using the Blasius similarity variable (equation 3.10) and the stream func-
tion, V¥ (for details see Kays and Crawford, 1980). After performing the required

steps, the transformed nondimensional stagnation enthalpy equation may be ex-
pressed as (the primes denote differentiation with respect to 1)

T +Prft =0, (3.21)

where 1’ is the nondimensional temperature gradient, f is the nondimensional stream

function, and Pr is the molecular Prandtl number. Equation (3.21) is the ordinary
differential equation reduced from the partial differential equation (3.18), which is
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the goal of a similarity transformation. The boundary conditions for equation
(3.21) are

1(n=0) = 0, (3.22)
t{n=ee) = 1. (3.23)

To specify the initial stagnation enthalpy profile, equation (3.21) is solved by
TEXIPBC using the same Runge-Kutta subroutine developed to calculate the initial

velocity profile.

3.1.3 Turbulent Kinetic Energy Profiles

A difficult task in calculating transitional flows is the specification of
TKE profiles. There is virtually no experimental data available that details the TKE
profile in the presence of high freestream turbulence [Rodi and Scheuerer, 1985a].
Due to the lack of information, most TKE profiles are developed on an ad hoc ba-
sis. There are some constraints, however, that the TKE profile must abide by:

() The TKE must vanish at the wall (i.e. when y = 0).

(2) The TKE profile must increase as y2 in the near-wall region
based on an asymptotic expansion of the fluctuating velocity
components [Patel, et al., 1985].

(3) The TKE profile must asymptotically approach the freestream
value of TKE at the boundary layer edge.

With these few constraints, adequate initial TKE profiles can be calculated.

One method for defining a TKE profile which meets all of the above
criteria was proposed by Rodi and Scheuerer [1985a, 1985b], which is of the form



62

= ll— 2 = ") 2
k(n) ke(Ue’ ke (f) (3.24)
where,

ke = 1.5(Tu. Ue) 2. (3.25)

It is easily seen how equation (3.24) may be used with a Blasius solution to gener-
ate a simple TKE profile. From equation (3.24), it is evident that the TKE profile
proposed by Rodi and Scheuerer is a monotonic increasing profile. Figure 3.2
shows an example of a general TKE profile generated by equation (3.24). Figure
3.3 demonstrates how the governing equations alter the TKE profile specified by
Rodi and Scheuerer's method as soon as the calculations are started. In Figure 3.3,
the scaling parameter k/kmax has been used to examine the overall shape of the TKE
profiles. The change in the TKE profile, in Figure 3.3, from Re,, = 3.1 to Rep, =
20.1 implies the initial TKE profile is not in "equilibrium” with the specified veloc-
ity and TDR profiles as well as the finite-difference form of the K. Y. Chier turbu-
lence model. The change in the initial TKE profile suggests a different methou 10
calculate initial TKE profiles could be used.

An alternate method for creating initial TKE profiles has been proposed by
Reshotko [1988] that meets all the required criteria. The initial TKE profile pro-
posed by Reshotko contains a distinct peak in the profile near the wall with an
asymptotic trend to the freestream TKE value at the boundary layer edge. The
Reshotko TKE profile (see Appendix B for derivation) is defined as

k(n) = ke[f +0.5nf] 2. (3.26)

where { and f" are defined for a Blasius solution. Figure 3.4 shows a comparison
of the Reshotko TKE profile with the Rodi and Scheuerer TKE profile under the
same flow conditions. The initial condition criteria stated by Reshotko to define the

starting location for the TKE profile is
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Figure 3.2. Turbulent kinetic energy initial profile based on the method of Rodi
and Scheuerer [1985a].
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Figure 3.3. Developing turbulent kinetic energy profiles at various momentum
Reynolds numbers after the initial profile of Rodi and Scheuerer
[1985a].
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Figure 3.4. Comparison of the Reshotko [1988] initial turbulent kinetic profile to

the initial turbulent kinetic energy profile of Rodi and Scheuerer
[1985a).
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Re, < 0.01
xS )i (3.27)

Figure 3.5 shows how TKE profiles evolve from the initial TKE profile generated
by equation (3.26). Comparing Figures 3.5 and 3.3, demonstrates how the finite-
difference solution alters the initial Reshotko TKE profile as compared to the initial
Rodi and Scheuerer TKE profile. For the first two profile locations of Figure 3.5
(Rem = 2.1 and Rey, = 20.3), the Reshotko initial profile does not appear to be al-
tered as much as the Rodi and Scheuerer initial profile. The Reshotko TKE profile
appears to be in "equilibrium" with the other dependent profiles as well as the fi-
nite-difference equations of the K. Y. Chien turbulence model. Equation (3.26)
was incorporated in the Runge-Kutta routine of TEXIPBC to calculate initial TKE
profiles.

Examining initial TKE profiles demonstrates that an initial TKE profile that
matches the numerical behavior of a K. Y. Chien turbulence model does match the
numerical behavior of a Jones and Launder [1972, 1973] type turbulence model at
low-Reynolds numbers. For example, the Reshotko TKE profiles used in this
study for the K. Y. Chien turbulence model were not numerically compatible with
the Launder and Sharma [1974] wrbulence model, a derivative of the Jones and
Launder [1972, 1973] turbulence model. Instead, the Rodi and Scheuerer initial
TKE profiles were more in agreement with the numerics of the Launder and
Sharma turbulence model. Therefore, the behavior of the damping functions and
the low-Reynolds number terms of any two-equation turbulence model at low-
Reynolds numbers dictate the form that the initial TKE profile will assume.
Whether the evolved form of TKE profile, subject to the particular turbulence
model being used, is correct or not is subject to debate.

One source of information concerning developing turbulent profiles,
specifically TKE profiles, is the study of turbulized laminar flow. A developing
flat plate boundary layer in the presence of hi gh freestream turbulence levels can be
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Figure 3.5. Developing turbulent kinetic energy profiles at various momentum

Reynolds numbers after the initial profile of Reshotko [1988].
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termed "pseudo - laminar”, since it differs both from the purely laminar layer and
from the turbulent layer at low turbulence [Dyban, et al., 1976]. This "pseudo -
laminar” layer is turbulized by the penetration of freestream turbulence into the
boundary layer. From research conducted on turbulized laminar boundary layers
(Dyban, et al., 1976, Dyban and Epik 1978, and Motulevich, et al., 1984), it is
noted that the TKE profile for a turbulized boundary layer does not monotonic in-
crease as shown by the Rodi and Scheuerer TKE profile. Instead the TKE profile
has a distinct peak in the profile near the wall and an asymptotic trend to the
freestream TKE value at the boundary layer edge like the Reshotko TKE profile.
Research into the turbulized laminar boundary layers may provide information that
leads to new forms of damping functions and low-Reynolds number terms for two-
equation turbulence models to obtain "physically" correct turbulent profiles at low-
Reynolds numbers.

3.1.4 Turbulent Dissipation Rate Profiles

Experimental data for calculating a TDR profile does not exist; therefore,
more flexibility exists for defining (or misdefining) the initial TDR profile. As with
the TKE profile, the TDR profile also has some constraints that must be met before
the profile is considered valid.

(1) The TDR profile must asymptotically approach the freestream value of
TDR at the boundary layer edge.

(2) Near the wall, the TDR profile must be proportional to y2 [Patel, et
al., 1985] for the K. Y. Chien turbulence model.

The initial TDR profile used in this study assumes the dissipation rate is
proportional to the production rate of TKE, as proposed by Rodi and Scheuerer and
others



gn) = ak5, (3.28)

where a, is a turbulence structural coefficient, - uv/k. The e-values described by
equation (3.28) approach zero at the boundary layer edge; therefore, an additional
equation was imposed by Rodi and Scheuerer,

£ > € (3.29)
where
~ _ kcls
€ = . (3.30)

This condition insures that the length scale at any location within the boundary layer
does not exceed the freestream length scale, Le.

Figure 3.6 shows an example of a general TDR profile generated by equa-
tion (3.28). In using equation (3.28) in TEXIPBC it was noted that large gradients
in € near the freestream are calculated for certain combinations of Ee and a;, namely
for a small value of ::e coupled with a moderate to large value for a;. Freestream
gradients should be avoided for initial profiles because it signifies the edge of that
boundary layer has not been properly located. The TKE and TDR shear layer
thicknesses are constrained initially to the velocity boundary layer thickness (d) be-
cause 8 is the only known shear layer thickness at the start of the calculations.

In summary, equation (3.28) is used from the wall to the peak in the TDR
profile, but, to eliminate the creation of freestream gradients, a cubic polynomial
was fit between the peak to the freestream TDR level. The cubic polynomials fit
both magnitude (‘t::c and Emax) and slope (zero slope conditions) at both ends of the
domain. Figure 3.7 shows, as a comparison, the initial TDR profile calculated
from equation (3.28) with and without the cubic polynomial fit to eliminate the
freestream gradient for small Ec Figure 3.8 shows that TEXSTAN does not alter
the initial TDR profiles for y/8 < 0.5, however; for y/8 > 0.5 the TDR profile is

69



70

1'5TIII]IIII]ITII]II!I]IIII
t—- —
\
1.0 — —
-
y
) -
0.5 —_
0.0 11111111]1111]111111111
0.000 0.002 0.004 0.006 0.008 0.010

E#

Figure 3.6. Turbulent dissipation rate profile based on the method of Rodi and
Scheuerer [1985a).
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modified since the shear layer thickness for the TDR profile is different than the
velocity shear layer thickness. Equations (3.28), equation (3.29), and the cubic
polynomial fit are used in TEXIPBC to calculate TDR initial profiles.

3.2 Boundary Conditions

The solution to a set of parabolic equations depends on the boundary condi-
tions at the wall and the freestream locations. As with the initial profiles, boundary
conditions must be defined for each of the dependent variables. For TEXSTAN,

each of the dependent variable boundary conditions have different effects on the de-

veloping boundary layer. The freestream velocity boundary condition defines the
freestream pressure gradient, affecting the growth of the boundary layer. The
freestream stagnation enthalpy boundary condition is a source for heat transfer be-
tween the freestream and the wall. The freestream TKE and TDR boundary condi-
tions define the freestream turbulence affects on the boundary layer, especially in
the laminar and transitional regions. This section outlines the methods used by
TEXIPBC to calculate the various dependent variable boundary conditions.

3.2.1 Velocity Boundary Conditions

For boundary layer flows with a wall and freestream, the boundary condi-
tions for the momentum equation, assuming no wall mass transfer, are defined by
equations (3.7) to (3.9). The velocity boundary condition reduces to a problem of
calculating U(x). Numerical boundary layer codes typically can not use a raw ex-
perimental freestream velocity distribution as a boundary condition because small
experimental errors in the discrete velocity measurements greatly influence the cal-
culation of gradients. The importance of a smooth velocity distribution can not be
overstated, even though the velocity distribution may appear smooth it does not
guarantee the velocity gradient will be smooth. As shown in equation (3.4), the
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pressure gradient used in the momentum equation may be expressed as a function
of the freestream density, freestream velocity, and freestream velocity gradient. If
the input velocity distribution is not smooth, then the velocity gradient calculation
will introduce large errors in the pressure gradient calculation, which will affect the
solution of the momentum equation.

If derivative values must be calculated, the use of a least-squares polyno-
mial (or spline) fit is recommended to smooth the data before differentiating it
[Carnahan, et al., 1969]. This method was used by the author in creating
TEXIPBC. Input to TEXIPBC consists of some form of freestream data such as
freestream velocity distribution, freestream Mach number distribution, freestream
pressure distribution, or freestream pressure coefficient (Cp) distribution. The
data, often called loading data, may be either raw experimental data or data from an
inviscid Euler solution. The loading data is then processed through a least-squares
cubic spline routine, called ICSVKU [IMSL, 1984], to obtain a smooth continuous
distribution of loading data. The degree of smoothing of the loading data is a func-
tion of the number of knots selected by the user. A knot is a point between which
two cubic polynomials are joined. At each knot location the function, its first
derivative, and its second derivative are matched. Figure 3.9 shows the matching
conditions at each knot location for a simulated spline curve.

The degree of smoothness and acceptable fit to the original data is a function
of the number of knots selected and the judgement of the user. The more knots that
are used the less smooth the final loading distribution becomes, ana conversely, the
fewer the knots used the smoother the resulting loading distribution becomes.
Appendix C demonstrates the affect the number of knots has on the degree of
smoothing for a given loading distribution. From the smoothed loading data, a
smooth velocity distribution may be calculated using the far-field s:.: gnation condi-
tions and one-dimensional compressible gas equations. The final smoothed veloc-
ity distribution is then used by TEXSTAN as the freestream velocity boundary
condition.
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An added feature of TEXIPBC is its ability to calculate the pressure gradient
in the same manner as TEXSTAN. The smoothed velocity distribution is pro-
cessed through a "not-a-knot" spline which calculates the velocity gradient and re-
sulting pressure gradient at each boundary condition location. This option in
TEXIPBC allows the user to see approximately how TEXSTAN will calculate the
pressure gradient without having to actually run TEXSTAN. The "not-a-knot"
spline used in TEXIPBC and TEXSTAN requires the second derivative at each
endpoint of the curve to be specified. Since, these derivatives are unknown, an
extrapolation method is used to estimate the second derivative at the endpoints.
This extrapolation method can lead to sl ght-to-moderate errors in the pressure gra-
dient near the leading and trailing edge of the solution domain even though the input
velocity distribution is smooth.

3.2.2 Stagnation Enthalpy Boundary Conditions

The boundary conditions for the stagnation enthalpy equation are as follows

wall boundary condition for I*: I'(x,y=0) = I;(x) (3.31)
or,
" I = v
wall boundary condition for q": ¢ (x,y=0) = - %Q%Q =qw(x) (3.32)
and,

freestream boundary condition for I*: I'(x,y—)oo) = I. (x) = constant (3.33)

The wall stagnation enthalpy level or wall heat flux are usually specified from ex-
periment and as a result they are known quantities. The specification of the stagna-
tion enthalpy boundary conditions reduces to a problem of calculating I (x). The
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far-field flow conditions (Uy, Ty, and Py, etc.) for a given experiment are usually
known. Therefore, the far-field static enthalpy is calculated via air property tables
or assuming air is a calorically perfect gas and knowing the far-field temperature.
From these variables the stagnation enthalpy of the flow can be calculated as

. U? .
I = It + —1— = Ie(x)

3.34
2g.¢) ( )

*

where g. and cj are the force-mass and work-energy conversion constants. By
definition, the stagnation enthalpy is constant outside the boundary layer provided
there is no entropy generation, i.e. no curved shock waves or chemical reactions in
the flow. Hence, the freestream stagnation enthalpy boundary condition will be
constant and equal to the far-field stagnation enthalpy. On the other hand, the
freestream static enthalpy will change if the freestream velocity varies due to a

change in the contour of the body.
3.2.3 Turbulent Kinetic Energy and Turbulent Dissipation Rate
Boundary Conditions

The boundary conditions for the TKE and TDR governing equations for the

K. Y. Chien two-equation turbulence model are as follows

wall boundary condition for TKE: k(x,00 = 0.0 (3.35)
freestream boundary condition for TKE: k(x,0) = ke(x) (3.36)
wall boundary condition for TDR:  &(x,0) = 0.0 (3.37)

m
—~
>
(=4}
Pl
|

freestream boundary condition for TDR: £ ,0) = 'f::e(x) (3.38)



78

Assuming all cross-stream gradients vanish as y — oo, the governing equa-
tions describing the TKE and TDR boundary conditions may be derived from
equations (2.19) and (2.20) as follows

de _ 2 . p. 3.39

Ue ™ €-D (3.39)
~ ~2

Ucdee - 1,8 E. (3.40)
dx ke

The D and E are the extra low-Reynolds number (LRN) termis defined by equations
(2.43) and (2.44). Equations (3.39) and (3.40) are ordinary differential equations
because the y-dependence of the variables has been eliminated at the freestream.
Specifying k. and Ee at the initial boundary condition, i.e. x = 0, is sufficient to
define k. and Ee at all subsequent x-locations by integrating equations (3.39) and
(3.40). Asaresult, TEXSTAN does not require TKE and TDR to be specified at
each x-location, instead, accurate initial values for TKE and TDR are the only re-

quirement.

The freestream length scale for a turbulent boundary layer is defined by di-
mensional arguments as

kl.5
Le = = (3.41)
€
For grid generated turbulence, the freestream length scale should increase with in-
creasing x-distance [Tennekes and Lumley, 1972]. Upon examining equation
(3.39) and (3.40) a problem with calculating the freestream TKE and TDR bound-

ary condiuons for the K. Y. Chien two-equation turbulence mode] was discovered.
Inserting equations (2.43) and (2.44) into equations (3.39) and (3.40) yields



U = -Ee- %155 (3.42)
and
U, ée— =-Cf ’é_ - 2ue§§—cxp(-0.5yg) . (3.43)
dx ke " y2

The second term on the right-hand side of both equations (3.42) and (3.43) contain
1/y.2 factors. For wransitional studies, the initial profiles are laminar, and as a re-
sult, the boundary layer thickness, 8 = ye, is very small. Therefore, in equation
(3.42), the LRN term tends to be on the same-order-of-magnitude as the freestream
dissipation term. In equation (3.43), the LRN term is several orders-of-magnitude
smaller than the freestream dissipation term and has a negligible effect. When
equations (3.42) and (3.43) are integrated to obtain ke and Ee distributions, ke
tends to decay more rapidly than physically justified due to the affect of the LRN
term. The resulting freestream length scale distribution will decrease rather than in-
crease, contradicting the basic length scale behavior for grid generated turbulence.
The freestream length scale will eventually increase but not until the flow has been
fully turbulent for some distance. The length scale begins to increase because the
turbulent boundary layer is thicker than a laminar boundary layer which results ina
smaller 1/y.? factor and correspondingly a smaller LRN term in equation (3.42).

To correct the freestream length scale problem associated with the K. Y.
Chien two-equation model, the LRN terms were ignored when calculating the
freestream TKE and TDR boundary conditions. Neglecting the low-Reynolds
number terms, the K. Y. Chien governing equations for the freestream TKE and
TDR distributions become

Ued—k—e = ‘Ee (344)

and

d ~2
U, % = - fzi—e—. (3.45)
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Equations (3.44) and (3.45) are not the true goveming equations to calculate the
freestream TKE and TDR distributions for the K. Y. Chien turbulence model.
Therefore, by using equations (3.44) and (3.45) there is a possibility of introducing
a discontinuity in the boundary layer length scale distribution. However, calcula-
tions for flat plate C; distributions with and without the LRN terms in the
freestream governing equation did not show any variations in the Cypredictions. A
freestream discontinuity in the boundary layer length scale distribution does not ef-
fect the Ct predictions of TEXSTAN. The length scale distribution for these tests
increased with increasing x-distance which demonstrates that the LRN terms in
equations (3.42) and (3.43) are not physically realistic when applied at the
freestream location. Equations (3.44) and (3.45) are the governing differential
equations used in TEXSTAN to calculate the freestream TKE and TDR boundary
conditions when using the K. Y. Chien two-equation turbulence model.

Figures 3.10 to 3.12 are plots of the K. Y. Chien turbulence model simula-
tion of the decay of k. and & along with the freestream length scale, L, distribution
for the grid 1 (Tue; = 1.3%), grid 2 (Tue; = 2.6%), and grid 3 (Tu,; = 6.2%)
freestream turbulence level distribution of Blair and Werle's [1980] experimental
transition studies. Equations (3.44) and (3.45) were used to calculate the
freestream TKE and TDR levels and equation (3.41) was used to calculate the
freestream length scale. Figure 3.10 is a plot of k, versus x for all three grid cases
of Blair and Werle along with the numerical simulation for the decay of k.. As
shown in Figure 3.10, k. ; increases and the slope in the decay curve for k in-
creases as the freestream turbulence level increases. Figure 3.11 is a plot of E, ver-
sus x for all three grid cases of Blair and Werle. Figure 2.11 shows how Ee,i has a
nonlinear increase as the freestream turbulence level is doubled. Figure 3.12isa
plot of L. versus x for all three grid cases of Blair and Werle. As discussed before,
the freestream length scale should increase as a function of x. Figure 3.12 shows
that with the corrections made to equations (3.44) and (3.45) the freestream length
scale distribution does increase with increasing x distance.
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numerical simulation of Blair and Werle's [1980] freestream
turbulence level distribution.
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numerical simulation of Blair and Werle's [1980] freestream
turbulence level distribution.
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The most accurate method for obtaining proper values for k.(x=0) and
Ec(x=0) requires the knowledge of the decay of freestream turbulence provided by
experimental results. From the knowledge of the decay of Tu,(x), equation (3.25)
may be used to obtain the corresponding k.(x) distribution. The difficulty of speci-
fying §4x=0) is solved by simply creating a computer code that integrates equations
(3.44) and (3.45) given a value for k.(x=0) and an initial guess for EE(X=0) . The
resulting numerical k(x) distribution may be graphically compared with the exper-
imental k.(x) distribution to see if the initial guess for Ee(X=0) results in the proper
decay of ke(x). If the initial ’éc(x=0) value is not correct, another guess for Ee(x=0)
is made and the numerical calculation is conducted again. This process continues
until the guess for Ec(x=0) results in a numerical ke(x) distribution that matches the
experimental ke(x) decay. As mentioned in Chapter 1, for accurate numerical
turbulence modeling, the freestream turbulence level must be specified at a
minimum of two locations in order for the initial Aee boundary condition to be

calculated.

For the case when only one value of the freestream turbulence level is
known, a method to estimate the correct initial ;:g value has been developed by the
author. From the grid generated turbulence studies of Comte-Bellot and Corrsin
[1966], it was noted that the longitudinal length scale could be approximated by a
power law fit

Le = (x-xq)™ (3.46)

where m = 0.34 and x is the apparent origin of the length scale growth. A com-
puter code was developed that solved equations (3.44) and (3.45) subject to the
given k.(x=0) and an initial guess for Ee(X=0). At each x-station of the integration
the freestream length scale is calculated according to equation (3.41). Upon com-
pletion of the numerical calculation, the slope of the numerical L.-distribution is
compared with the slope, m , measured by Comte-Bellot and Corrsin. If the slopes



do not match, a new guess for ’ée(x=0) is made and the calculations are conducted
again. Eventually, a value of €x=0) is found which allows the slope of the nu-
merical L.-distribution to match the slope of the power law fit of Comte-Bellot and

Corrsin.
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Chapter 4

Numerical Simulation of Transition

4.0 Introduction

This chapter compares the simulation capability of Schmidt's proposed
transition model, equations (2.55), coupled with the K. Y. Chien two-equation tur-
bulence model. The first section examines the sensitivity of the "natural transition"
behavior of the K. Y. Chien model to the initial turbulence profiles. The "natural
transition” process is a built-in transition model that all two-equation turbulence
models possess to simulate laminar-to-turbulent flow via the diffusion of TKE and
TDR from the freestream boundary. A sequence of computational tests were con-
ducted to evaluate the influence that the initial turbulence profiles have on "natural
transition", which must be known if the effects of the transition models are to be
evaluated. The second section outlines the calibration method used to obtain empir-
ical model constants for the transition models and a comparison between the numer-
ical simulation of Schmidt's PTM transition model, equation (2.55), and the exper-
imental transition studies of Blair and Werle [1980]. From this comparison, a
problem associated with the K. Y. Chien two-equation model for transition studies
was identified. The third and final section defines the reason why the K. Y. Chien
two-equation turbulence model should not be used for transition studies.

4.1 Sensitivity of Starting Conditions on "Natural Transition"

The importance of initial profiles to the prediction of transition has been
demonstrated in the work by Rodi and Scheuerer [1985a, 1985b] and Schmidt
[1987]. In Rodi and Scheuerer's work, an improvement in transition predictions
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was shown with the use of their "physically" realistic k and € initial profiles. This
section examines the following questions, proposed by Schmidt [1987], in an
attempt to limit the influence inappropriate initial conditions have on transition

predictions,

1. How important to the transition predictions is the exact location at which the
calculations are started?

2. How important is the specification of the initial € profile to the prediction of
transition?

3. What are the quantitative differences in the transition predictions when the
freestream turbulence varies and how do these predictions compare with

known correlations?

The first question addresses problem of where to begin numerical calcula-
tions for accurate transition studies. Schmidt [1987] developed a consistent method
for determining the starting location for transition studies, and in contrast, for the
present work different k and € initial profiles were used in a different boundary
layer computer code. Therefore, a starting criterion for transition calculations must
be defined. The second question addresses the lack of information concerning the
definition of the € profile in a laminar boundary layer with high freestream turbu-
lence. The effect that the a; structural coefficient for the initial € profile (equation
3.28) has on the boundary layer calculations is not known. Before the transition
models can be evaluated, the importance of well-posed initial turbulence profiles
must be assessed. The third question addresses the effect freestream turbulence

levels have on the behavior of two-equation "natural transition".

4.1.1 Effect of Starting Location on "Natural Transition"

A set of numerical experiments were conducted to determine the effect that
the starting location has on the "natural transition" prediction of the K. Y. Chien
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two-equation turbulence model. The following conditions were maintained for the
numerical experiments (see Appendix D for details of the numerical parameters)

* Flat plate flow to eliminate curvature effects

* dP/dx = 0 by using a constant freestream velocity

* Tu. =constant = 3.0% by setting é; to a small value

* The ;:-profile structural coefficient, a;, was maintained at 1.0.

The initial profiles for these numerical tests were generated using equations (3.11),
(3.21), (3.26), and (3.28). By setting a; = 1.0 for this set of test cases, the initial
TDR profile did not influence the results and the behavior of the "natural transition”
due to the starting location could be examined solely. For these numerical tests, the
starting locations examined were for Re, equal to 109, 10, 102, 103, and 10°.
The local friction coefficient, Cy, distribution is used to examine the transition
process over the flat plate, since Ct correlations for both laminar and turbulent flow
exist and serve as lower and upper bounds for evaluating the transition process.

Figure 4.1 is a plot of the flat plate C; distribution versus momentum
Reynolds number. This figure shows the sensitivity of the transition prediction to
the starting location. From Figure 4.1, it is noted that for Rex 2 10* the transition
prediction is dependent on the starting location, but for Rex < 103 the transition
prediction is independent of the starting location. Since the Reshotk - - - 2 pro-
file criteria, equation (3.27), generates starting profiles at Rey less than 10, the use
of this criteria for locating initial profiles will ensure the numerical transition pre-
dictions are independent of the starting location. Schmidt [19871 also concluded
that the location of the transition became independent of the starting location for Re,
< 103
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Figure 4.1. Local fricton coefficient distribution versus momentum Reynolds

number for sensitivity of "natural transition" predictions of the K. Y.

Chien turbulence model [1982] to the calculation starting location.
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4.1.2 Effect of Turbulent Dissipation Rate Profile on "Natural
Transition"

This section examines the effect that the initial TDR profile has on the
“natural transition" process of the K. Y. Chien turbulence model. As discussed in
Section 3.1.4, the TDR initial profile contains a structural coefficient, a;, which
acts as a scaling parameter. Since no experimental data exists for TDR profiles, it
is not known what a; should be set to in order to generate accurate initial TDR
profiles. To remedy this problem a set of numerical tests were conducted to de-
termine if the "natural transition" process would become independent of the initial
TDR profiles for certain values of a;. For this set of numerical tests the following
conditions were maintained (see Appendix D for further details)

* Flat plate flow to eliminate curvature effects

* dP/dx = 0 by using a constant freestream velocity

* Tu, =constant = 3.0% by setting é; to a small value
* The starting location is Re, = 10! (equation 3.27).

As with the previous sensitivity analysis, the initial profiles for these numerical
tests were generated using equations (3.11), (3.21), (3.26), and (3.28). From the
previous section, it was determined that setting the starting location to Re, < 103,
will not influence the transition predictions. Different TDR initial profiles were
generated by setting a; equal to 102, 101, 109, 10, and 10-2. The initial TKE and
velocity profiles were the same for each simulation, but each TDR initial profile had
the same basic shape but were scaled differently due to a,.

Figure 4.2 is the plot of the Cs distribution versus momentum Reynolds
number for each set of initial profiles. As shown in this figure, the transition pre-
diction is independent of a; when the calculations are started at Re, < 103. This
conclusion is consistent with what Schmidt [1987] observed.
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The "natural transition"” process of two-equation turbulence models is con-
trolled by the transport of k into the boundary layer from the freestream. From the
numerical tests conducted so far, it appears that by moving the starting location up-
stream, the transition prediction becomes independent of the initial profiles; there-
fore the lack of information conceming the initial profiles for TKE and TDR does
not hinder transition modeling. By moving the starting location upstream, the
length over which k has an opportunity to diffuse and convect into the boundary
layer before reaching any particular downstream location has increased. The results
of the previous sensitivity analyses has been to create a criteria for initiating numer-
ical calculations that will not affect the "natural transition" process. With the
"natural transition" process unaffected, any proposed transition model may be im-
plemented into TEXSTAN and the resulting modification to the transition prediction
may be easily evaluated.

4.1.3 Effect of Freestream Turbulence Level on "Natural
Transition"

The effect of freestream turbulence on transition has been discussed by
Jones and Launder [1974] and detailed by Schmidt [1987]. As a further examina-
tion, this section outlines a set of numerical tests that were conducted to determine
the behavior of "natural transition" as computed by the K. Y. Chien two-equation
for various freestream turbulence levels. For these numerical tests the following
conditions were maintained (see Appendix D for further details)

* Flat plate flow to eliminate curvature effects

¢ dP/dx = 0 by using a constant freestream velocity

* The starting location determined from equation (3.27)

* The E-profile structural coefficient, a;, was maintained at 1.0.



The initial profiles for these numerical tests were generated using equations (3.11),
(3.21), (3.26), and (3.28). The tests were conducted for freestream turbulence
levels, Tue, ranging from 1.0% to 8.0%. To maintain a constant freestream turbu-

lence intensity, the freestream dissipation rate was set to 0.01.

Figure 4.3 is a plot of the C; distribution versus momentum Reynolds
number for each freestream turbulence level. As expected, the start of transition
moves upstream with increasing freestream turbulence level due to the increased
diffusion of TKE from the freestream. Also evident in Figure 4.3 is that at higher
Tu. levels (greater than 6.0%) the numerical Cy distribution is above the fully turbu-
lent C; correlation for large Rep,. The turbulent Ct correlation used in Figure 4.3 is
for negligible freestream turbulence; therefore, it should be expected that the numer-
ical C¢ distribution be above the correlation at high freestream turbulence levels.
Correlations for Cy in the presence of high freestream turbulence do exist but the
strong nonlinear dependence of the Ci correlation on the freestream turbulence in-
tensity and the freestream length scale make the Cg correlation difficult to define
(see Hancock and Bradshaw, 1983). The turbulent Cy correlation used in Figure
4.3 (along with other figures) may be thought of as a gauge for determining the
fully turbulent behavior of a two-equation turbulence model at low freestream tur-
bulence levels. In Figure 4.3, the start and end of transition may be defined by the
low and high points in the numerical Cg distributions. For Tue <2.0% the start and
end of transition is relatively easy to define; however, for Tue > 2.0% a distinct
start and end of transition can not be easily defined because of the shape of the Ct

distribution.

Abu-Ghannam and Shaw [1980] developed the following correlations for
estimating the start and end of transition for zero pressure gradient flows as a func-

tion of the freestream turbulence intensity

Rems = 163 +exp(6.91 - 100%Tu,) 4.1

and

93



'No!'- L] jI7TVll[ Ll 'T'IIIT] ¥ Tlllll:
A: Tu, = 1.0%
B: Tu, = 2.0% |
C: Tu. = 4.0%
\ D: Tu, = 6.0%
E: Tu, = 8.0% ]
N
N\
\ ]
\ C = 0.455
-, )
e - N (in(3.826*Ref?s)}
- - N 1
o [ >Q ]
R -
o E —\\" ~
- /’ -
L P N o
o~ V
= / = -
C
- a y
\
C = QAAQQ___,\
Rem \
(=)
2 ! i llllll[ d I\lljlllj - il 11 11
10! 102 10° 104
Rem
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number for sensitivity of “natral transition" predictions of the K. Y.
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Remp = 2.667 * Rems (4.2)

where Ren s is the momentum Reynolds number for the start of transition and
Rem g is the momentum Reynolds number for the end of transition. Figures 4.4
and 4.5 are plots of the start and end momentum Reynolds number as a function of
freestream turbulence intensity for the test cases described above. As shown in
Figures 4.4 and 4.5, the start and end momentum Reynolds number could only be
defined for the test cases with Tu. < 2.0%. For the other test cases a definitive start
and end could not be defined. From Figure 4.4, the onset of transition has the cor-
rect trend but it is consistently earlier than specified by the Abu-Ghannam and
Shaw correlation. In Figure 4.5, the correct trend is also observed, but as with the
start, the end of transition is consistently predicted early. Also noted from Figures
4.4 and 4.5 is that as the freestream turbulence level increases, the transition length
decreases but the numerical transition length is consistently shorter than the experi-
mental transition lengths of Abu-Ghannam and Shaw.

In summary, this section has investigated the effect that the initial turbulent
profiles have on the "natural transition" predictions of the K. Y. Chien two-equa-
tion turbulence model. It was shown that "natural transition" is sensitive to the
starting location of the initial profiles for Rex = 104. The reason for this depen-
dance has to do with the fact that the "natural transition" capability of two-equation
turbulence models is a function of the diffusion and conduction of TKE into the
boundary layer from the freestream, which of course is a function of the distance
over which the boundary layer has developed. However, the K. Y. Chien turbu-
lence model is not sensitive to the starting location for Rey < 103. The Ct distribu-
tion was shown to have no dependance on the structural coefficient of the dissipa-
tion profile as long as the initial profile begins at Re, < 103. The independence of
the "natural transition" behavior to the scale of the initial E-proﬁlc is a benefit since
there is no experimental data available to calculate initial E—proﬁles. The "natural
transition"” behavior of the K. Y. Chien turbulence model was shown to have the
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correct trends when compared to the data of Abu-Ghannam and Shaw, but the start,
end, and length of transition was consistently shorter than for experimental

measurements.

4.2 Numerical Simulations Using Schmidt's PTM Transition
Model

The purpose of this section is to determine if Schmidt's proposed transition
model will improve the transition capability of the K. Y. Chien two-equation turbu-
lence model when used in the TEXSTAN boundary layer computer code. In the
previous section it was shown that the "natural transition" predictions of the K. Y.
Chien turbulence model resulted in transition predictions with the correct trends but
with the start and end consistently predicted early, resulting in a short length of
transition. In this section, the calibration method and results for the transition
model proposed by Schmidt, equation (2.55), coupled with the K. Y. Chien turbu-
lence model in the TEXSTAN boundary layer code is discussed. Then the simula-
tion of the flat plate heat transfer data of Blair and Werle [1980] using Schmidt's
PTM transition model and the K. Y. Chien model are compared to the experimental
data to determine the prediction capability of the transition model.

4.2.1 Calibration Procedure for Schmidt's PTM Transition Model

The transition model proposed by Schmidt controls the growth rate of TKE
in the boundary layer and thus controls the transition process. As shown in equa-
tion (2.55), two empirical parameters, A and B, must be calibrated for each two-
equation turbulence model. Schmidt obtained calibration curves for the A and B
empirical constants as functions of freestream turbulence intensity for the Lam and
Bremhorst [1981] and Launder and Sharma [1974] two-equation turbulence mod-
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els. However, in this thesis the K. Y. Chien two-equation turbulence model is
used; therefore, new calibration curves for A and B must be developed.

The start and end of transition correlations proposed by Abu-Ghannam and
Shaw, equations (4.1) and (4.2), are used to determine when the correct combina-
tion of A and B allows the numerical transition prediction to match the experimental
correlations for a given freestream turbulence intensity. Since the prediction capa-
bility of the transition models are based on the A and B empirical parameters, which
in turn are based on the experimental correlations of Abu-Ghannam and Shaw, the
importance of these experimental transition correlations is readily apparent.

For a given freestream turbulence intensity, a series of computational tests
were conducted. Given an initial guess for A and B, a corresponding start and end
of transition is numerically calculated and compared to the Abu-Ghannam and
Shaw transition correlations. If the guess for A and B does not yield the correct
start and end of transition, another guess for the A and B is made. This iteration
process continues until given values of A and B yields a start and end of transition
that matches the Abu-Ghannam and Shaw correlations.

To reduce the number of required guesses to determine A and B at each
turbulence intensity, it is suggested that the following plotting method be used.
Contour plots for Rep, s and Rep, £ as a function of A and B are used to track the
transition start and end momentum Reynolds numbers prescribed by equations
(4.1) and (4.2). By observing the trends of both the start and end momentum
Reynolds number contour plots, guesses for A and B are made until the Rep, s
contour line and the Rey, g contour line cross at the same combination of A and B.
It is at this cross-over point where the specified A and B will yield a Re s and
Ren e that matches the Abu-Ghannam and Shaw correlations.

It should be noted that Schmidt used an additional stability criteria in con-
junction with his PTM transition model to control the production term of the k-
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equation. He believed that since the production term, Py, is the model term that
simulates the amplification of perturbations in the boundary layer, there should be
some critical momentum Reynolds number, Req, ¢, below which Py should always
be insignificant. For Rey, < Rep, ¢, Py is maintained at zero. This critical momen-
tum Reynolds number criteria affects only the production of k and does not affect
the transport of k in the boundary layer for Rey, < Remc. Schmidt believed Rep ¢
should be approximately equal to 162, corresponding to the Tollmien-Schlichting
limit of stability. However, at high Tu, levels transition occurs near Re,, = 163
which does not allow sufficient time for the TKE to develop in the boundary layer.
Therefore Schmidt used Rep, ¢ = 125 for all of his calculations. For low Tue, the
Ren c affects are minimal. For the present study, Rep, ¢ was set to zero and Py
was calculated over the entire calculation domain. The reason for not using Rep, ¢
is due to the observations of Dyban et al. [1976] who stated that in the presence of
high freestream turbulence the boundary layer does not act as a laminar boundary
layer. Therefore, since the boundary layer is not purely laminar, the production of
k would not be suppressed and instead would be continually changing. Note that,
following Schmidt, modification of Py in the production of dissipation was not

carried out.

4.2.2 Calibration of Schmidt's PTM Transition Model for the K.
Y. Chien Turbulence Model

The method for obtaining calibration curves for the A and B empirical con-
stants of Schmidt's PTM transition model coupled with the K. Y. Chien turbulence
model requires a series of numerical tests. The conditions for the calibration tests
were the same as discussed in Section 4.1.3,

* Flat plate flow to eliminate curvature effects
* dP/dx = 0 by using a constant freestream velocity
¢ The starting location determined from equation (3.27)



e The e-profile structural coefficient, a;, was maintained at 1.0
e The freestream dissipation rate is set to 0.01 to maintain a constant

freestream turbulence intensity.

The effect of a decaying freestream turbulence intensity will be discussed later.
Test calculations to determine the values of A and B for the K. Y. Chien two-equa-
tion turbulence model with the Schmidt PTM transition model were conducted for
freestream turbulence levels of 1.0% to 8.0%. For the test calculations, the start
and end of transition is taken to be the minimum and maximum points of the calcu-

lated Cj distribution.

The results of the calibration tests for calculating the A and B empirical
constants of Schmidt's transition model are shown in Figures 4.6 and 4.7. In these
Figures, the A and B constants have been nondimensionalized with respect to the

initial freestream conditions as follows

— A
A= o :sz (4.3)
and
_— T
- pg, Ug . (4.4)

Curve fits between the discrete numerical calibration tests allowed the
values of A and B to be determined for any freestream turbulence level between
1.0% and 8.0%. The curve fits described the variation of A and B as follows,

for 001<¢<0.08 A = 20.687-2605.0%¢ + (8.0223*104)*¢2
(1.0488*109)%0° + (4.9551* 1080+

and
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for  0.01<¢<0.08 B = -3.1533 + 277.72%¢ + 1066.2%¢>

-(2.6284%10%)x¢’ (4.6)

where ¢ = Tu,, A = A*106, and B = B*1012,

Figures 4.8 and 4.9 show how the transition predictions of the K. Y. Chien
two-equation turbulence model, coupled with Schmidt's PTM transition model,
match the start and end transition momentum Reynolds numbers for the correlations
of Abu-Ghannam and Shaw. These figures show that with Schmidt's PTM transi-
tion model, the numerical start and end of transition can be modified to match the
correlations of Abu-Ghannam and Shaw.

All of the numerical transition tests so far have not allowed a decay in the
freestream turbulence intensity so that the A and B empirical parameters could be
evaluated for a constant freestream turbulence intensity. To eliminate a decay in
freestream turbulence intensity, Ee was set to a small value. However in reality, the
freestream dissipation rate can be quite large, especially for high freestream turbu-
lence intensities, which in turn causes a decay in Tu,. To model the decay of Tu,
and its affects on transition, the calculation for the empirical parameters of the PTM
transition model, A and B, are simply based on the local freestream conditions.
Equation (3.25) may be rearranged to obtain an expression for the freestream turbuy-
lence intensity as a function of the freestream TKE and freestream velocity as
follows

vk,

Tue = —2&— . .
Ue 13 U, 4.7

Using equation (4.7) the local freestream turbulence intensity is easily calculated
and used with equations (4.5) and (4.6) to obtain new A and B values for the
transition model based on the local conditions. Schmidt suggests the A and B pa
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Reynolds number for K. Y. Chien [1982] "natural transition",
Schmidt's PTM transition model [1987], and the experimental
correlations of Abu-Ghannam and Shaw [1980].



rameters be updated every 10 to 20 integration steps for flows with high freestream
turbulence intensities. The simplicity of Schmidt's transition model is readily ap-
parent when flow acceleration or deceleration is added to the simulation process.
The acceleration or deceleration of a boundary layer is produced by a change in the
freestream velocity. Equation (4.7) takes a changing freestream velocity into ac-
count when calculating the freestream turbulence intensity; therefore, the empirical
parameters, A and B, are easily calculated for an accelerating or decelerating
boundary layer.

Figure 4.10 is a plot of the C; distribution versus momentum Reynolds
number for the same test conditions as for Figure 4.3 except that the PTM transition
model has been used to simulate the start and end of transition according to the
Abu-Ghannam and Shaw correlations. From Figure 4.10 it is noted that at Tu, =
2.0% the end of transition has been moved far downstream and as a result the
length of transition has increased considerably. A discussion of this problem will
be detailed in Section 4.3.

4.2.3 Comparison of the K. Y. Chien Turbulence Model with
Schmidt's PTM Transition Model to Experimental Data

The direct comparison of numerical transition simulations has not been con-
ducted up to this point; instead the experimental correlations of Abu-Ghannam and
Shaw have been used to calibrate Schmidt's PTM transition model for the K. Y.
Chien turbulence model in TEXSTAN. At this point the PTM transition model will
be used to simulate the experimental flat plate transition studies available in the open
literature. All of the experiments considered are for transition occurring under the

influence of freestream turbulence.

The first comparison of Schmidt's PTM transition model is made for the
experimental data of Blair and Werle [1980]. The details of the flow parameters
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used for this comparison are provided in Appendix D. This set of numerical simu-
lations are for flat plate zero pressure gradient flow. Blair and Werle measured the
effects of transition in terms of heat transfer; therefore, the numerical comparisons
with the experimental data will use the Stanton number, St. Three test cases, with
freestream turbulence levels of 1.3%, 2.6%, and 6.2%, will be used to examine

transition.

Figures 4.11 to 4.13 are plots of the Stanton number distribution versus x-
Reynolds number for the grid 1 (Tue; = 1.3%), grid 2 (Tue; = 2.6%), and grid 3
(Tue,; = 6.2%) flow conditions of Blair and Werle. In these figures, the "natural
transition” and PTM modified transition are compared to the experimental transition
data of Blair and Werle. In Figures 4.11 to 4.13 it is noted that the "natural transi-
tion" plots for the Stanton number do not show any form of transition similar to
local friction coefficient plots. This apparent lack of transition is due to the fact that
for all three Blair cases K. Y. Chien "natural transition” occurred on the unheated
starting length of the plate; therefore, the step change in wall heat flux at the end of
the unheated starting length masked any remnants of the transition process. In
Figures 4.11 and 4.12, the PTM modified transition does not compare well to the
experimental data in the transition region for the grid 1 and grid 2 flow conditions.
In fact, the PTM model does not even reproduce the fully turbulent results.

In examining Schmidt's [1987] results for the grid 1, grid 2, and grid 3
cases of Blair and Werle [1980], it was shown that Schmidt could reproduce the
experimental data quite accurately for grid 1 and fairly accurately for the other two
grids. What was consistent with all of Schmidt's results was his ability to repro-
duce fully turbulent results at the end of transition. The results shown in Figures
4.11 to 4.13 are the first evidence that the K. Y. Chien two-equation turbulence
model is not appropriate for transition studies. It was at this point that further com-
parison of Schmidt's PTM transition model in TEXSTAN with experimental data
would be useless because of the apparent fundamental problem with using the K.
Y. Chien two-equation turbulence model for transition studies. This low-Reynolds
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number problem associated with the K. Y. Chien two-equation model also pre-
vented a direct comparison of the transition prediction capabilities of Schmidt's
PTM transition model and The University of Texas transition model. At this point
the objective of this research turned to the identification of the source of the low-
Reynolds number problem associated with the K. Y. Chien turbulence model.

4.3 Problems Associated with the K. Y. Chien Turbulence Model
for Transition Studies

From Figures 4.11 and 4.12 it was noted that the modified transition results
do not reproduce the experimental Stanton number distribution as well as expected.
The numerical predictions appear to "damp" the development of a fully turbulent
boundary layer. This behavior is also seen in Figure 4.10 for Tu, = 2.0% which
shows that the fully turbulent response is "damped", instead of predicting a fully
turbulent boundary layer at the end of transition. The delay in the fully turbulent
response with the use of Schmidt's PTM transition model is attributed to the
"natural transition” behavior of the K. Y. Chien two-equation turbulence model. In
Figure 4.3, the Ct distribution for "natural transition" with Tue > 1.0% appears to
be "damped" instead of having a sharp increase as for Tu, < 1.0%. This
"damping" effect hinders the ability to define a specific start and end of transition
which is very important in developing the model constants for Schmidt's PTM
transition model. Therefore, the "damping” of the transition response shown in
Figure 4.10, using Schmidt's PTM transition model, can be directly related to the
"damping" affect of the "natural transition" behavior for the K. Y. Chien two-
equation turbulence model, shown in Figure 4.3.

To determine why the K. Y. Chien two-equation turbulence model yields a
different "natural transition" behavior than traditional two-equation turbulence
models, a comparison between the "natural transition" results of the K. Y. Chien
[1982] and Launder and Sharma [1974] was conducted. The Launder and Sharma
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[1974] two-equation turbulence model is similar to the Jones and Launder [1972
and 1973] two-equation turbulence model except for different empirical constants,
damping functions, and low-Reynolds number terms as given in equations (2.45)
to (2.54). The following conditions were used to compare the "natural transition”
C distribution for the K. Y. Chien and Launder and Sharma two-equation turbu-
lence models (see Appendix D for details),

 Flat plate flow to eliminate curvature effects

» dP/dx =0 by using a constant freestream velocity

» The starting location determined from equation (3.27)

« Freestream turbulence intensity, Tu,, was equal to 2.0%

* The E—proﬁle structural coefficient, a;, was maintained at 1.0

* The freestream dissipation rate is set to 0.01 to maintain a constant
freestream turbulence intensity.

Figure 4.14 is a plot of the C¢ distribution versus momentum Reynolds
number for the K. Y. Chien and Launder and Sharma two-equation turbulence
models. From Figure 4.14, two distinct differences in the transition predictions are
evident. First, the K. Y. Chien transition model predicts an earlier start of transi-
tion (Rep s =135) than for the Launder and Sharma transition model (Rep, s =
239). Second, the start and end of transition for the K. Y. Chien model are not as
clearly defined as for the Launder and Sharma model due to the "damping" affect in
the K. Y. Chien results. The purpose of the comparison of the K. Y. Chien model
to the Launder and Sharma model is to answer the tollowing two questions,

1. Why does the K. Y. Chien two-equation turbulence model predict an
earlier start of "natural transition” than the Launder and Sharma
turbulence model?

2. Why does the C; distribution for the K. Y. Chien two-equation turbu-
lence model in the transition region appear to be damped instead of
having a sharp increase?
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To answer the two questions posed above, the differences between the K.
Y. Chien turbulence model and the Launder and Sharma turbulence model must be
examined. The empirical constants, damping functions, and low-Reynolds number
terms for the K. Y. Chien and the Launder and Sharma turbulence models are given
in equations (2.35) to (2.44) and (2.45) 10 (2.54) respectively. In examining the
various terms of the two turbulence models the major differences between the two
models appear in the fu and f; damping functions, as well as the D and E low-
Reynolds number terms.

To determine if the low-Reynolds number terms, D and E, are the cause of
the differences between the K. Y. Chien turbulence model and the Launder and
Sharma turbulence model, the source terms for equations (2.19) and (2.20) were
combined as follows

~ oU \2 N
S = “‘(5) -(pe+D) 4.8)
and
~ aU 2 A2 J
SE = C]f]fu{g) -[pC2f2%+E (49)

Using equations (4.8) and (4.9), equations (2.19) and (2.20) are written as follows

ok ok 0 ( Hi )Bk
pUa—x+pV$_a§[ u+a a_y}”" (4.10)
and
de . Ik _ 3 ( ut)aé
pU$+pV$—ay u+o—€ a—yJ+S£ (4.11)



Equations (4.10) and (4.11) are not the exact form of the governing equations
solved by TEXSTAN, instead, Sk and S¢ are used for plotting purposes to compare
the K. Y. Chien turbulence model source terms to the Launder and Sharma source

terms.

In comparing the K. Y. Chien and Launder and Sharma turbulence models,
profiles of turbulence quantities are examined at various momentum Reynolds
numbers, relating to Figure 4.14. In the following comparisons, it is useful to
understand the status of the boundary layers for each of the turbulence models at
specified momentum Reynolds numbers. Table 4.1 shows the boundary layer
status for each turbulence model at specified momentum Reynolds numbers. The
various momentum Reynolds numbers described in Table 4.1 and used in the fol-
lowing comparisons were selected to emphasize the distribution of the various
boundary layer characteristics at the three stages of a boundary layer development,
the laminar stage, transitional stage, and the fully turbulent stage. For Rep, equal to
30 and 60, both the K. Y. Chien and Launder and Sharma turbulence models calcu-
late a laminar boundary layer. Therefore these two momentum Reynolds numbers
demonstrate the developing laminar boundary layer under the influence of the two
turbulence models. For Rey, equal to 135 to 359, both the K. Y. Chien and
Launder and Sharma turbulence models are within various stages of transition.
Therefore these momentum Reynolds numbers demonstrate a transitional boundary
layer under the influence of the two turbulence models. For Rep, equal to 1000 and
3000, both the K. Y. Chien and Launder and Sharma turbulence models predict a
fully turbulent boundary layer. Therefore, these two momentum Reynolds num-
bers serve to demonstrate the developing fully turbulent boundary layer under the
influence of the two turbulence models.
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Table 4.1. Boundary Layer Characteristics for Figure 4.14 as a Function of
Momentum Reynolds Number and Type of Two-Equation

Turbulence Model.
Ren Boundary Layer Characteristics
K. Y. Chien Launder and Sharma
30.0 Laminar Laminar
60.0 Laminar Laminar
135.5 Start of transition Laminar
239.0 In transition Start of transition
300.0 End of transition In transition
359.0 Turbulent End of transition
1000.0 Turbulent Turbulent
3000.0 Turbulent Turbulent

In the profiles that follow, all of the "+ scaling” is in terms of the local shear
velocity (u;) and kinematic viscosity. Definitions of the "+ scale” terms as well as

the other profile variables are provided in the nomenclature.

Figures 4.15 to 4.18 are profiles of Si* versus y* at the momentum
Reynolds numbers specified in Table 4.1. Figure 4.15 shows that S;* develops
more rapidly for the K. Y. Chien model than for the Launder and Sharma model in
the laminar region (Rey, = 30 and 60). Figure 4.16 shows the rapid rise in Sy*
associated with the start of transition for both turbulence models, however, the nise
in Si* for the K. Y. Chien model occurs at Re, = 135 where as for the Launder
and Sharma model the rise in Sy” occurs at Re, = 239. At the start of transition for
the K. Y. Chien turbulence model the peak region is at approximately y* = 18,
while the peak region is at a y* = 24 for the Launder and Sharma model. For fully
turbulent flow, as shown in Figure 4.18, the S* distribution for y* > 8 are approx-
imately the same for both turbulence models, but the peak region has moved closer
to the wall (y* = 12) for both models due to diffusion. In Figures 4.16 to 4.18, the
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K.Y. Chien model predicts an ever increasing negative Sy* in the very near-wall
region. The source of this increasing negative Sy* is due to the low-Reynolds
number term (D) in equation (4.8), which as shown in equation (2.43) contains a
1/y? term which becomes large as y — 0.

Figures 4.19 to 4.22 are profiles of S¢* versus y* at the momentum
Reynolds numbers specified in Table 4.1. As with the S;* proﬁles, Figure 4.19
shows that S¢* develops more rapidly for the K. Y. Chien model than for the
Launder and Sharma model in the laminar region (Rey, = 30 and 60). As shown in
Figure 4.16, the start of transition for the K. Y. Chien and Launder and Sharma
turbulence models are also reflected in Figure 4.20 with a rapid rise in S¢*. Fi gure
4.22 shows that for a fully turbulent boundary layer, the peak region of the S¢*
profile is larger and further from the wall for the Launder and Sharma turbulence
model than for the K. Y. Chien turbulence model. This peak region for the
Launder and Sharma model is at approximately y* = 10, while for the K. Y. Chien
model the peak region is at y* = 8. The source term development, shown in
Figures 4.15 to 4.22, is reflected in the development of the k* and £+ profiles.

Figures 4.23 to 4.26 are the k* profiles at the momentum Reynolds num-
bers specified in Table 4.1. Figure 4.23 shows a comparison of the degree to
which the k* profile has developed in the laminar region for the K. Y. Chien turbu-
lence model as compared to the Launder and Sharma turbulence model. The in-
creased k* profile for the K. Y. Chien turbulence model leads to an earlier start of
transition than for the Launder and Sharma model. Figure 4.24 shows the rapid
growth of the k* profile for the K. Y. Chien model once transition has started,
while for a fully turbulent boundary layer (Figure 4.26) the k+ profiles are relatively
constant. The cause of the increased development in the k* profile is explained by
examining the turbulent viscosity distribution for both turbulence models.

Figures 4.27 to 4.30 are the €* profiles at the momentum Reynolds num-
bers specified in Table 4.1. As expected, with an increased k* distribution in the
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Figure 4.24. Turbulent kinetic energy profiles at Rey, = 135 and 239 for the K.
Y. Chien [1982] and the Launder and Sharma [1974] turbulence
models.
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Figure 4.27. Turbulent dissipation rate profiles at Req = 30 and 60 for the K. Y.
Chien [1982] and the Launder and Sharma [1974] turbulence

models.
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laminar region, the £* distribution for the K. Y. Chien turbulence model is more

developed than for the Launder and Sharma turbulence model as shown in Figure
4.27. For a fully turbulent boundary layer, shown in Figure 4.30, the e+ profile is
larger for the Launder and Sharma model than for the K. Y. Chien model, while in
Figure 4.26, the k* profile for the K. Y. Chien model is larger than the k* profile
for the Launder and Sharma model.

Figures 4.31 to 4.34 are profiles of vi/v versus y* at the momentum
Reynolds numbers specified in Table 4.1. From Figure 4.31 it is noted that for 7 <
y*+ < 20 the following is true

i oM
Vc  VLs (4.12)

where C and LS correspond to K. Y. Chien and Launder and Sharma respectively.
With v, for the K. Y. Chien model greater than v, for Launder and Sharma model,

the near-wall production of TKE for the K. Y. Chien model will be greater than for

the Launder and Sharma model. However, by the time the boundary layer becomes
fully turbulent, the vy/v distribution for both the K. Y. Chien and Launder and

Sharma turbulence models become the same, as shown in Figure 4.34. From

equation (2.17) the turbulent viscosity may be written as

2
v, = Cuf K" (4.13)
£

Using the definition of the turbulent Reynolds number, Re, = K2ev , equation
(4.13) may be rewritten as follows

v
‘VL = CufuRe (4.14)

By examining equation (4.14), the characteristics of v,/v are defined by examining

the characteristics of f, and Re,.
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Figure 4.32. Eddy diffusivity profiles at Rey, = 135 and 239 for the K. Y. Chien
[1982] and the Launder and Sharma [1974] turbulence models.
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Figures 4.35 to 4.38 are profiles of Re, versus y* for the momentum
Reynolds numbers defined in Table 4.1. As shown in Figures 4.35 to 4.38, the
turbulent Reynolds number for both the K. Y. Chien and Launder and Sharma tur-
bulence models are not exactly the same but they reflect similar behavior. The tur-
bulent Reynolds number is a ratio of the boundary layer TKE and TDR, therefore it
is merely a reflection of the distribution of TKE and TDR governed by the solution
of equations (2.19) and (2.20). It should be expected that the turbulent Reynolds
number for both the K. Y. Chien and Launder and Sharma be approximately the
same and not pose a direct influence on the calculation of vy/v.

On the other hand, the f|, function has a direct effect on the calculation of the
turbulent viscosity. Figures 4.39 to 4.42 are profiles of f, versus y* for the mo-
mentum Reynolds numbers defined in Table 4.1. As shown in Figures 4.39 and

4.40, the following is noted,
fuc > fuLs for 3 <y*<25 and 0<Rep, < 300. (4.15)

Equation (4.15) is the reason why the start of transition for the K. Y. Chien turbu-
lence model is less than the start of transition for the Launder and Sharma turbu-
lence model. For the K. Y. Chien two-equation model, a larger f, damping func-
tion in the near-wall region means v, will be larger in the near-wall region, which
ultimately translates into an increase in the production of TKE in the near-wall
region and an earlier start of transition (the first question posed earlier in this

section).

To answer the second question posed in this section pertaining to the
"damped" Ci distribution associated with the K. Y. Chien turbulence model, the
form of the f,, expression must be examined. The f, proposed by K. Y. Chien is
only a function of y, as shown in equation (2.40). This means that the f; function
has only one shape and varies only in the y-direction as the boundary layer grows,
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Figure 4.37. Turbulent Reynolds number profiles at Rey, = 300 and 359 for the
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Figure 4.41. Turbulent viscosity damping function profiles at Rey, = 300 and 359

for the K. Y. Chien [1982] and the Launder and Sharma [1974]
turbulence models.
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as shown in Figures 4.39 t0 4.42. The f, function used by K. Y. Chien was un-
doubtedly formulated for a fully turbulent boundary layer and does not change
whether the flow is laminar or in transition. Therefore, in a laminar boundary
layer, the K. Y. Chien turbulence model predicts an f,, distribution throughout the
entire layer. On the other hand, the f, for the Launder and Sharma model is a func-
tion of the turbulent Reynolds number and does reflect whether the flow is laminar,
transitional, or fully turbulent depending on the ratio of TKE to TDR. In Fi gure
4.39, there is an f,, distribution for the K. Y. Chien model throughout the boundary
layer, but for the Launder and Sharma model the f,, distribution is constant except
for at the freestream location. In Figure 4.40, the diffusion of TKE and TDR from
the freestream causes the f, distribution to change further into the boundary layer.
Figure 4.42, when compared to Figure 4.39, shows how much the f, distribution
has changed for the Launder and Sharma model. reflecting a change in the bound-
ary layer; whereas, the f, distribution for the K. Y. Chien model has remained the

same.

The "damped" effect in the Cs distribution for the K. Y. Chien model is
therefore due to the fact that the f,, function is set for a fully turbulent boundary
layer and, at the start of the calculations, the resulting f, distribution within in the
laminar boundary layer is not correct. In fact, the f, distribution for the K. Y.
Chien model is not correct until the boundary layer has progressed to a high
Reynolds number where the f,, distribution only occupies the log and viscous
regions of the turbulent boundary layer instead of the entire boundary layer when
the flow is laminar,

The problem associated with the f,, function for transitional flows does not
mean the K. Y. Chien two-equation turbulence model should not be used for turbu-
lence modeling. On the contrary, for internal flows at high Reynolds numbers the
numerical Cy distribution matches experimental data as shown by Pietrzyk [1985]
and Chen [1989]. For external flows, Patel et al. [1985) demonstrated that the K.
Y. Chien turbulence model produces reasonable results for fully turbulent flat plate
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boundary layer flow. The limitations of the K. Y. Chien model appear to be in the
laminar and transition region.

In an attempt to compare Schmidt's transition mode! and The University of
Texas transition model (the original objective of this thesis), the use of two other
numerical turbulence models was investigated. The two-equation turbulence mod-
els of Lam and Bremhorst [1981] and Launder and Sharma [1974] were examined
in this study to attempt to make a comparison of the prediction capabilities of the
two proposed transition models. However, in each case numerical instabilities in
TEXSTAN associated with each of the turbulence models examined hampered all

progress.

In the case of the Lam and Bremhorst turbulence model in TEXSTAN, a fully
turbulent boundary layer would revert back to a laminar boundary layer in a zero
pressure gradient flow field. The instability by which the turbulent boundary layer
reverts back to a laminar boundary layer always begins near the solid wall bound-
ary and propagates out to the freestream. The exact cause of the numerical instabil-
ity associated with the Lam and Bremhorst turbulence model was not determined,
but it is believed to be tied into the asymptotic behavior of the turbulence quantities
in the region of the solid wall boundary and how TEXSTAN calculates these values
in the wall half control volume of the finite difference equations,

In the case of the Launder and Sharma mode! in TEXSTAN, for freestream
turbulence levels less than 2.0%, the boundary layer would never completely tran-
sition into a fully turbulent boundary layer. Instead the boundary layer midway
through transition would revert back to a laminar boundary layer. For freestream
turbulence levels greater than 2.0%, the Cs distribution would oscillate at high mo-
mentum Reynolds numbers associated with a fully turbulent boundary layer. The
low freestream turbulence level problem associated with the Launder and Sharma
turbulence model was discovered and corrected by Schmidt [1987] in his numerical
boundary layer code. However, when the corrections suggested by Schmidt, for
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the Launder and Sharma turbulence model, were implemented into TEXSTAN,
they had no effect on the transition for low freestream turbulence levels (Tue <

1.0%).



Chapter §

Summary and Recommendations

5.0 Summary

The original goal of this research was to compare the transition prediction
capabilities of the two transition models, developed at the University of Minnesota
and The University of Texas at Austin, coupled with the K. Y. Chien two-equation
turbulence model. However, the results of this research has lead to the identifica-
tion of a major shortcoming in the use of the basic K. Y. Chien turbulence model

for low-Reynolds number flows.

Accurate specification of initial dependent variable profiles (such as velocity,
stagnation enthalpy, TKE, and TDR) are required in order to obtain satisfactory
heat transfer predictions in the stagnation region of a turbine blade. Boundary layer
solutions can be desensitized to errors in the initial conditions by starting the
boundary layer solution far upstream of the region of interest. However, for tur-
bine blade calculations, the entire airfoil surface makes up the computational do-
main and requires accurate initial profiles specified at the onset of the calculations.
A method for specifying initial TKE and TDR profiles that are compatible with the
finite-difference equations defining the K. Y. Chien two-equation turbulence model
are detailed in Chapter 3.

Accurate specification of boundary conditions for the computational domain
are required in order to obtain accurate results in the governing equations at each
integration step. This study detailed a method used to define an accurate and
smooth freestream velocity distribution which results in a smooth pressure gradient
distribution for the momentum equation. The specification of the freestream turbu-
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lence level at a minimum of two locations was required in order to predict an accu-
rate decay of freestream TKE and TDR, which in turn affects the transitional behav-
ior of any two-equation turbulence model. A method for calculating the initial
freestream TKE and TDR levels given the freestream turbulence level at one, two,
or more locations is detailed in Chapter 3. A problem associated with calculating a
decreasing freestream length scale distribution for the K. Y. Chien turbulence
model was identified and steps to correct the problem are discussed.

Ultimately, a problem associated with using the K. Y. Chien two-equation
turbulence model for transition studies was identified. The problem with the K. Y.
Chien two-equation model involved premature start of "natural transition" and a
"damped" response as the simulation moved to fully turbulent flow at the end of
transition. This is in contrast to other two-equation turbulence models at compara-
ble freestream turbulence conditions. The "damping" of the transition response of
the K. Y. Chien turbulence model lead to an inaccurate estimate of the start and end
of transition for freestream turbulence levels greater than 1.0%. An inaccurate de-
termination of the start and end of transition leads to difficulty in calculating proper
model constants for either of the proposed transition models (equations 2.55 or
2.59). The cause of both problems associated with the K. Y. Chien turbulence
model is linked to the form of the f,, function defined by K. Y. Chien [1982].
Specifying the f,, function as only a function of y* leads to an increased production
of TKE in the near-wall region of a laminar boundary layer, which in turn leads to
an early start to transition. The resulting f,, distribution also leads to a "damping"
of the fully turbulent response of the K. Y. Chien turbulence model. The form of
the f, function specified by K. Y. Chien is for a fully turbulent boundary layer.
Therefore, in a laminar and transition region of a developing boundary layer, the
distribution of f,, is not correct and will not be correct until the boundary layer
becomes fully turbulént with the y* effect buried in the sublayer and log regions of
the bouhdary layer.
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5.1 Recommendations for Future Work

In this study, it is shown that the K. Y. Chien two-equation turbulence model
should not be used for transition studies because of the formation of the fy func-
tion. Asshown by Schmidt [1987], other two-equation turbulence models may be
used to obtain accurate transition simulations. For future work in comparing the
transition predictions of the two proposed transition models (equations 2.55 and
2.59), it is suggested that a two-equation turbulence model similar to the model
proposed by Jones and Launder [1972 and 1973] be used which employes an fy,
function that is not based on y*.

As for the TEXSTAN boundary layer code, the finite difference equations
should be examined to determine if the numerical instabilities associated with the
Lam and Bremhorst [1981] and Launder and Sharma [1974] two-equation turbu-
lence models are due to finite difference expressions. Particular emphasis should
be placed on the half control volume formulations for both at the wall and
freestream locations.

Future work on the study of transition should g0 beyond the comparison of
the two proposed transition models. The ability to numerically predict transition at
higher freestream turbulence levels (greater than 10.0%) should be investigated.
Included in the study of high freestream turbulence intensities should be an exami-
nation of numerically predicting transition under the influence of various pressure
gradients. The comparisons of developing dependent variable profiles has been
extremely beneficial in this study and would benefit future numerical studies.
Future studies should also examine the energy budget for any proposed turbulence
model to avoid any numerical irregularities in the boundary layer calculations. For
all numerical studies the comparison of numerical simulations to available experi-
mental data is essential in order to draw the correct conclusions from the numerical
results.



Appendix A

Derivation of Model Equations for Turbulent Kinetic Energy
and Turbulent Dissipation Rate

This appendix is an outline of the derivation for the model form of the
turbulent kinetic energy (TKE) and turbulent dissipation rate (TDR) equations, as
shown in Chapter 2 as equations (2.19) and (2.20). The equations are derived in

tensor notation, then converted to standard Cartesian coordinates.
A.1 Turbulent Kinetic Energy Equation

The standard method to derive the TKE equation is to subtract the mean
momentum equation from the instantaneous momentum equation and multiply the
results by u;, then time-average. Using Reynolds decomposition, the instantaneous

and mean momentum equations, neglecting body forces, are

ol pUU1) = ko (A.1)
and L
o pUKU; ) = OOii = ak( PULY; ) (A2)

where Gy, is the stress tensor for the instantaneous velocity, O; is the stress tensor
for the mean velocity, and J is the partial derivative operator, d/dx. The instanta-

neous stress tensor is defined as follows
Oki = Oki + Oki (A.3)

where o'ki is the stress tensor for the fluctuating velocity. The definition of the
mean and fluctuating stress tensors are
156



OCki -PSH + Tki (A-4)

and
P8y + Ty (A.5)

Oki
where Ty; is the mean shear stress tensor, Ty; is the fluctuating shear stress tensor,

and §; is the Kronecker delta. The mean and fluctuating shear stress tensors are

defined as follows in terms of the mean and fluctuating velocity gradients

1 aUk
H{ axn axk ] (A-6)

duy , dy;
2“[ (ax, * axkﬂ (A7)

The fluctuating momentum equation is calculated by subtracting the mean

and

momentum equation (A.2) from the instantaneous momentum equation (A.1),

which yields
3 pl Uy + 0 Us + ui))] = 3 03 ) - ol -pug ). (A.8)

Multiplying equation (A.8) by u;, time-averaging the resulting equation, and rear-
ranging terms yields the TKE equation

a pUxk ) = —puyuidU;) - 8«{ puyk + pu'4 %)- u}t'ki] -todu)  (A.9)

where k is the turbulent kinetic energy defined as 0.5u;u; and repeated indicies im-

ply summation overi (or k) = 1, 2, and 3.

Equation (A.9) is the TKE equation with true dissipation. A majority of the two-
equation turbulence models are written in terms of isotropic dissipation. By com-
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bining the last two terms on the right-hand side of equation (A.9), the isotropic
form of the TKE equation may be written as

A pUk ) = -pﬁak(ui)-ak{pu‘;(m%’ -uakk]—é (A.10)
1 I 1 v Vv

where I is the convection of TKE by the mean flow, 11 is the production of TKE by
the mean flow, III is the transport of TKE by turbulence and transport of flow work
by turbulence, IV is the transport of work due to viscous stresses, and V is the dis-
sipation of TKE by viscous stresses. In equation (A.10), gis the isotropic dissipa-

tion defined as udyu;dyu;.

The transport terms diffuse or redistribute the given quantity within the boundary
layer. Invoking the boundary layer assumptions and recognizing the fact that uvis
the dominant Reynolds stress in a two-dimensional boundary layer, equation
(A.10) may be written in the following cartesian notation.

dk dk ——dU 9 p| ok ~
pUa—x+pV$=-pqu-g{PE(k"'%"ua;J‘e. (A.11)
1 Il I Y

Various terms of equation (A.11) must be modeled in order to numerically
obtain a solution. The following is a list of the model forms of the different terms
of the TKE equation.

TermI:  Represents the convection of TKE. No modeling is required for
this term; therefore,

k ok
1 = pUg;+pVa;. (A.12)

TermIIl:  Represents the production of TKE. Using the mean field clo-
sure approximation, equation (2.15), this term becomes



——odU _  [dU)|2
= v Sl - ul(ay (A.13)

Term III:  Represents the turbulent transport of TKE. Neglecting the fluc-
tuating pressure and using a form of eddy-diffusivity hypothesis
(Markatos, 1987) this term becomes

S (m)
_ay o, dy |- (A.14)

TermIV: Represents the molecular diffusion of TKE. No model is re-
quired for this term; therefore,

_i[_ a_kJ
ay | Moy |-

k+E
P

A Py

IV = (A.15)

Term V:  Represents isotropic dissipation. No model is required for this
term; therefore,

A ou du’
V = -¢g= 'Ha—y-g (A.16)

Using the model terms, equations (A.12) to (A.16), the form of the TKE equation
used for two-equation turbulence modeling (equation 2.19) may be written as
follows

k . ok _ 48U)2+8( +&)a_k

pUZ + pv 5 5 o ay} - (pe+D), (A17)

ax 37-“

where D is the low-Reynolds number term used to ensure € = 0 at the wall.

A.2 Turbulent Dissipation Rate Equation

The standard approach to deriving the TDR equation is to differentiate the x;
-component of the fluctuating momentum equation with respect to xj and multiply

the results by voU;, then time average [Hanjalic and Launder, 1976]. Using the
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chain rule and conservation of mass (9xUx = 0), the fluctuating momentum

equation (A.9) is rewritten as

pUR| “1) + pu'kak(Ui)+ pu;(ak(“;)"’ak( "P“'k“‘i) = ak( G'ki) . (A.18)

Differentiating equation (A.18) by x| yields

ol pusai i)+ puidy Ui+ oy i) + 2 o] | = 22 o) w19

Multiplying equation (A.19) by vou; and time-averaging produces

2] (o, 01 pUdxu; )+ ( i n ( puidiUi )+ (3 Jou ( pudiu; )| +
2] (v, ol o prei 1)) = 2l Byl o) (A.20)

After expanding each term of equation (A.20), the final form of the TDR equation

may be written as

UkakEI= 2v (3w X duuy )Ji I( 30, X 35u; ) (3xU; ) - 2v a.u;I IXI R

-2l vayam; | - 3 UE+ 2%(81U‘RX81P') - VSE} - 2vu (O 019k Us) , (A.21)
v Va VB Ve VI

where € is the isotropic dissipation, Iis the convection of TDR by the mean flow,
11 is the production of TDR by the mean flow, III is the production of TDR by vor-
tex stretching, IV is the dissipation of TDR by viscous stresses, V is the transport
of TDR by velocity fluctuations, VB is the transport of TDR by pressure fluctua-
tions, Vc is the transport of TDR by dissipation (self transport), and Vl is the pro-
duction of TDR by the mean flow.
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Invoking the boundary layer assumptions and using the fact that u'v is the
dominate Reynolds stress, each term of equation (A.21) may be modeled as follows
using cartesian coordinates [Hanjalic' and Launder, 1972].

TermI:  Represents the convection of TDR. No modeling is required for
this term; therefore,

A

A as ae
I = UgdE = a—-+ ay. (A.22)

TermII:  Represents the production of TDR by the mean flow. Using the
mean field closure approximation, equation (2.15), this term
becomes

n = -2v[ (3w X A M By X oy )l (Ui ) = Clﬁul(au> (A.23)

Terms Il + IV:  Represents the production of TDR by vortex stretching and the
dissipation of TDR by viscous stresses. This term is modeled
by Hanjalic and Launder [1972] as

~2
M+IV = -2[v{ o ) (3w ) duy ) +( vaydw) )] = -G e (A24)

Term V4: Represents the turbulent diffusion of TDR by velocity fluctua-
tions. Using a form of eddy-diffusivity hypothesis (Hanjalic
and Launder, 1972) this term becomes

3 [v, 3

g Oc g . (A.25)

Vo = 'ak(;ic_’é) =

Term Vg: Represents the transport of TDR by pressure fluctuations. This
term is neglected; therefore,

Vg = -%Blu'kalP' =0, (A.26)

Term V¢:  Represents the transport of TDR by dissipation (self transport).
No modeling is required for this term; therefore,

o¢

3y (A.27)

Ve = vake—v
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Term VI: Represents production of TDR by the mean flow. This term is
neglected because higher order derivatives of the mean flow are
assumed negligible (Hanjalic and Launder, 1972)

V] = 2vu'k( alu'i )( dokUj) =0, (A.28)

Jones and Launder [1972] proposed the use of damping functions to modify
the C-constants in the TDR equation so that numerical calculations may be made
within the buffer and viscous layers close to the wall. Using the model terms,
equations (A.22) and (A.28), with the addition of damping functions, the form of
the TDR equation used for two-equation turbulence modeling (equation 2.20) may

be written as follows

2 ~
g, 0 _ Uy o[, ok ( o2
PUSS +PVg, = Cif “*(a) ay[(“*aa—yﬂ PC2fzi B (A29)

where E is the low-Reynolds number term used to improve the match of the peak
level of TKE with experiment [Jones and Launder, 1972].



Appendix B

Derivation of the Reshotko Equation Describing an Initial
Turbulent Kinetic Energy Profile

This appendix outlines the method used to derive the initial TKE profile,
equation (3.26), to simulate the effect freestream turbulence intensity has on the
otherwise Blasius type of profile. To develop the TKE profile equation, assume
the velocity fluctuations in the streamwise direction are the only fluctuations con-

sidered, therefore,

k =05u2. (B.1)

The fluctuating streamwise velocity may be approximated as follows,

0 = U
u= S (B.2)

Using the Blasius variables, equation (B.2) may be written as,

dU - _d '
AT (u.f]. (B.3)

Conducting the indicated differentiation in equation (B.3) yields

u=f+05nf. (B.4)

Equation (B.4) defines the fluctuating streamwise velocity component in terms of
the Blasius variables. Examining Equation (B.1) the TKE profile may be defined

as,
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k ~Cyu?2. (B.S)

Using equation (B.4) and defining the proportionality constant ,C, as the
freestream TKE value, the Reshotko TKE profile equation is defined as follows

k= C[f+05n ] (B.6)

where,
Ci = 1.5(TuU = ke. (B.7)

The constant of proportionality is defined as k. in order for the TKE profile to
asymptotically match the freestream TKE boundary condition.
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Appendix C

Use of Splines to Obtain Smooth Freestream
Velocity Data

As discussed in Chapter 3, TEXSTAN cannot use raw experimental
freestream velocity data as boundary conditions because small experimental errors
result in large errors in the numerical calculation of gradients. The purpose of this
Appendix is to graphically demonstrate the effect the number of knots used in a
least-squares cubic spline routine has on the calculated freestream velocity distribu-
tion and resulting pressure gradient calculation.

TEXSTAN requires a continuous representation of the freestream velocity
distribution in order to calculate the pressure gradient at each integration step for the
momentum equation, TEXIPBC uses a least-squares cubic spline to calculate a
continuous freestream velocity distribution given a discrete set of input freestream
velocity data values. There is one advantage to using a least-squares cubic spline
over a general cubic spline. Besides giving the user a continuous representation of
the input data, a least-squares cubic spline allows the user the option of smoothing
any irregularities in the data through the selection of a number of knots.

To examine the effect the number of knots have on the calculation of the
freestream pressure gradient, TEXIPBC was used to determine the freestream pres-
sure distribution, freestream velocity distribution, and freestream pressure gradient
distribution as a function of the number of knots used. Appendix D contains the
relevant flow parameters used for calculating the freestream conditions. The
freestream pressure distribution, i.e. input loading, used to calculate the freestream
velocity and pressure gradient distributions was obtained from Daniels and Browne
(1981] and corresponds to the turbine blade suction at the design conditions. In the

analysis of turbine blade loading distributions the loading is often related to a loca-
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tion on the blade through the use of the surface distance, s. The surface distance,
s, is the distance measured along the surface of a blade from the stagnation point,
where s = 0, to the trailing edge location. Since the curvature of the pressure and
suction surfaces of a turbine blade are different, they will have different surface

distances.

In the following discussion of the figures, the role the number of knots
used by the least-squares cubic is considered. For zero knots, the least-squares
cubic spline does not smooth the input data; therefore, the resulting output
freestream distributions will contain random oscillations. For a large number of
knots (approximately greater than 15) the resulting input data will not be smoothed
because the advantage of a least-squares fit to the data between the knots vanishes.
As a result, the output freestream distributions will look very similar to the case
with zero knots. For a small number of knots (approximately less than 12) the in-
put data will be smoothed which translates into smooth output distributions. In
summary, the degree of smoothing for output freestream distributions is subject to
the user's judgment and the number of knots used. The question of what aspects
of the input loading data should or not be smoothed must be considered by the

user.

Figure C.1 is a plot of the freestream pressure distribution as a function of s
for a various numbers of knots. Zero knots corresponds to the original input
freestream pressure distribution, ten and five knots correspond to different degrees
of smoothing used by the least-squares cubic spline. As expected, the smoothest
output pressure distribution is for the five knot case.

Figure C.2 is a plot of the freestream velocity distribution as a function of s
for a various numbers of knots. The freestream velocity distribution is calculated
by TEXIPBC using the input freestream pressure distribution and one-dimensional
compressible flow equations. In this figure the freestream pressure distribution is
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Figure C.1. Freestream pressure distribution for the suction surface of Daniels’
{1978] turbine blade for the design Reynolds number case.
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Figure C.2. Freestream velocity distribution for the suction surface of Daniels'
[1978] turbine blade for the design Reynolds number case.
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relatively smooth for the zero knot case, but by using five knots, the "bulge" ats =

0.01 m can be eliminated.

Figure C.3 is a plot of the freestream pressure gradient distribution as a
function of s for a various number of knots. The pressure gradient is calculated
from equation (3.4). What is immediately noticed in Figure C.3 is large oscilla-
tions in the pressure gradient calculations for the cases of zero and ten knots.
These oscillations only emphasize the point that a smooth velocity distribution, like
Figure C.2, does not guarantee a smooth pressure gradient distribution. The nu-
merical calculation of the velocity gradient used in equation (3.4) amplifies any er-
rors in the velocity distribution which results in the the large oscillations shown in
Figure C.3. The five knot case smooths out a majority of the oscillations in the
pressure gradient. Therefore, the freestream velocity distribution calculated from
the five knot case could be used by TEXSTAN to simulate the freestream velocity
boundary conditions for the suction surface of the turbine blade.
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Figure C.3. Freestream pressure gradient distribution for the suction surface of
Daniels' [1978] turbine blade for the design Reynolds number case.



Appendix D

Details of Numerical Simulations

This appendix outlines the various flow field characteristics used for the
numerical transition simulations. The experimental heat transfer data of Blair and
Werle [1980] for flat plate zero pressure gradient flow is presented as well as the
turbine blade velocity loading for Daniels [1978] used in Appendix C.

For all of the numerical simulations discussed in this section, the working
fluid was air, the fluid properties were considered constant, and the turbulent
Prandtl number was assumed constant and equal to 0.9. Boundary layer
entrainment was based only on the velocity profile and viscous dissipation was

included.

Section 4.1.1 numerical simulation parameters (zero pressure gradient):
Ue = 303m/s To = Te = 2947K

P. = lam T. = 295K
Tu, = 3.0% kei = 1239 m%s?
a3, = 1.0 €. = 0.01 m¥s3

integration step size = 0.258
Starting locations:
forRe,; = 10,000 —» x; = 5.0294*103 m

forRe,; = 1000 - xi = 5.0294%10“4 m
for Rey; = 100 -  x; = 5.0294*10° m
forRe,; = 10 - x; = 5.0294*10°m
forRey,; = 1 - x; = 5.0294*107 m
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ion 4.1
Ue
P,
Tu,

Rex_i

imulati

30.3 m/s
1 atm
3.0%

10

integration step size =
Initial turbulent dissipation rate profiles:
100, 10, 1, 0.1, and 0.01

a)

n T T
T = T. = 2947K
Te = 295K
kei = 1.239 m¥s?
Eei = 0.01 m/s3

0.258

Section 4.1.3 numerical simulation parameters (zero pressure gradient):

Ue
P,

a)

30.3 m/s
1 atm

1.0

integration step size =

Starting locations:

for Tu,
for Tu,
for Tu,
for Tu,
for Tu,
for Tu,

0.5%:
1.0%:
2.0%:
4.0%:
6.0%:
8.0%:

ke,i
kc.i
ke.i
ke.i
ke.i
ke.i

Ty
T.

~
Ee i

= 205K
= 0.01 m2/s3

0.25%

0.034 m?/s2 and
0.138 m2/s2 and
0.551 m2%/s2 and
2.203 m?/s? and
4.958 m?/s2 and
8.814 m?/s2 and

T. = 2947 K

Rey
Rey i
Re, i
Rex,i
Rey
Rey i

40,000
100

25

6

2

1

Section 4.2.3 numerical simulation parameters for the Blair and Werle

1 zer I ien
Us = 303 m/s Te
P = lam ai
qw = 0.0 W/m?
Qw = 850 W/m?
Tu/Te =

integration step size

= 205K

= 1.0

0.0 < X
0.0429 < «x

0.258

<
<

0.0429 m
24 m

1.03 (approximately) for x > 0.0429 m



lairGrid 1:  atx =3.114*10m: Tu,
ke,i

€e.i

BlairGrid2: atx= 7.546*10-m: Tu,
ke,i

€ei

lair Grid 3: at x = 1.004*10m: Tu,
ke i
ee.i

Table D.1 contuins the experimental flat plate zero pressure gradient heat
transfer distribution for Blair and Werle [1980]. This data is used in

Figures 4.11 to 4.13.

1.27%
0.222 m?/s2

4.0 m¥/s3

2.58%
0.917 m?/s?

25.0 m%/s3

6.17%
5.243 m2/s?

200.0 m2/s3
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Table D.1. Experimental Heat Transfer Data of Blair and Werle [1980]
for Flat Plate Zero Pressure Gradient Flow

x-Reynolds Stanton Number Stanton Number Stanton Number
Number Grid 1 Grid 2 Grid 3
1.10603E+05 0.002916 0.002962 0.004105
1.35854E+05 0.002234 0.002321 0.003316
1.61106E+05 0.001954 0.002060 0.003251
1.86358E+05 0.001688 0.001811 0.003155
2.11609E+05 0.001574 0.001650 0.003207
2.36861E+05 0.001465 0.001596 0.003130
2.62113E+05 0.001356 0.001533 0.003054
2.87364E+05 0.001261 0.001583 0.003007
3.12616E+05 0.001221 0.001583 0.003007
3.37868E+05 0.001166 0.001723 0.002984
3.63120E+05 0.001124 0.001803 0.002917
4.13623E+05 0.001103 0.002096 0.002790
4.64126E+05 0.001055 0.002349 0.002848
5.14630E+05 0.001097 0.002501 0.002790
5.65133E+05 0.001129 0.002751
6.66140E+05 0.001377 0.002444 0.002549
7.67147E+05 0.001734 0.002415 0.002544
8.68154E+05 0.001982 0.002321 0.002484
9.69161E+05 0.002159 0.002241 0.002390
1.07017E+06 0.002234 0.002240 0.002391
1.17117E+06 0.002192 0.002207 0.002350
1.27218E+06 0.002089 0.002136 0.002278
1.37319E+06 0.002056 0.002040 0.002216
1.47420E+06 0.002016 0.002051 0.002177
1.57520E+06 0.001989 0.002001 0.002183
1.67621E+06 0.001962 0.001967 0.002092
1.77722E+06 0.001936 0.001955 0.002074
1.87822E+06 0.001923 0.001921 0.002052
1.97923E+06 0.001962 0.001967 0.002134
2.08024E+06 0.001883 0.001905 0.002045
2.18124E+06 0.001873 0.001873 0.002038
2.33275E+06 0.001860 0.001865 0.001989
2.48426E+06 0.001832 0.001814 0.001936
2.63577E+06 0.001822 0.001813 0.001953
2.78728E+06 0.001776 0.001770 0.001930
2.93879E+06 0.001781 0.001761 0.001918
3.09030E+06 0.001760 0.001739 0.001910
3.24181E+06 0.001749 0.001741 0.001885
3.39332E+06 0.001719 0.001713 0.001868
3.54484E+06 0.001694 0.001711 0.001849
3.69635E+06 0.001719 0.001723 0.001868
3.84786E+06 0.001723 0.001718 0.001874
3.99937E+06 0.001703 0.001713 0.001874
4.15088E+06 0.001706 0.001723 0.001881
4.30239E+06 0.001693 0.001698 0.001850
4.45390E+06 0.001703 0.001705 0.001827
4.60541E+06 0.001645 0.001674 0.001793
4.75692E+06 0.001665 0.001650 0.001791




tion 4.3 numerical simulation
Us = 303m/s Ty
P, 1 atm Te
a; = 1.0 Ee.i
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meters (z ressur ient):
Te = 2947 K
295K
0.01 m2/s3

integration step size = 0.250

Starting locations:

for Tue = 2.0%: ke; = 0.551 m%/s2 and Re,; = 25

ndix i imulation
M = 0.35 T;
P = 0292MPa T,

Tw

r Daniel

432K
423K
289 K

integration step size = 0.258

Table D.2 contains the x and y coordinates and experimental freestream
pressure distribution for the suction surface of Daniels [1978] turbine
blade (design Reynolds number case). The x and y coordinates are
used to determine the turbine blade geometry and resulting wetted
surface distance, called s, while the freestream pressure distribution is
used to calculate the freestream velocity boundary conditions.
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Table D.2. Experimental x and y Coordinates and Freestream Pressure
Distribution for the Suction Surface of Daniels’ [1978]

Turbine Blade
Freestream

X (m) Y (m) Pressure (Pa)
0.00070 0.032640 2.92000e+5
0.00021 0.033561 2.78250e+5
0.00163 0.036909 2.18360e+5
0.00347 0.038693 1.82290e+5
0.00531 0.039692 1.80570e+5
0.00714 0.040228 1.82010e+5
0.00898 0.040383 1.85700e+5
0.01082 0.040187 1.84550e+5
0.01265 0.039667 1.76740e+5
0.01449 0.038807 1.72950e+5
0.01633 0.037538 1.65500e+5
0.01816 0.035857 1.59340e+5
0.02000 0.033829 1.54580e+5
0.02184 0.031472 1.48680e+5
0.02301 0.028736 1.44030e+5
0.02367 0.025685 1.44660e+5
0.02735 0.022444 1.53860e+5
0.02919 0.018998 1.55520e+5
0.03102 0.015314 1.45880e+5
0.03286 0.011348 1.44790e+5
0.03470 0.007042 1.33720e+5
0.03653 0.002307 1.47770e+5
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